

IMMINGHAM EASTERN RO-RO TERMINAL

Environmental Statement: Volume 3

Appendix 12.3 Phase 2 Ground Investigation Report

Document Reference: 8.4.12 (c)

APFP Regulations 2009 – Regulation 5(2)(a) and 5(2)(e) PINS Reference – TR030007

February 2023

Immingham Eastern Ro-Ro Terminal

Phase 2 Ground Investigation Report

Associated British Ports

Project number: 60664611

November 2022

Quality information

Prepared by

Checked by

Verified by

Approved by

Heather Hughes Graduate Environmental Scientist

Lucy Full Senior Environmental Engineer

David Cragg Technical Director

David Evans Associate Director

Revision History

Revision date	Details	Authorized	Name	Position
Nov 22	FINAL	Y	DC	Technical Director

Prepared for:

Associated British Ports

Prepared by:

AECOM Limited Royal Court Basil Close Chesterfield Derbyshire S41 7SL United Kingdom

T: +44 (1246) 209221 aecom.com

Where any conclusions and recommendations contained in this Report are based upon information provided by others, it has been assumed that all relevant information has been provided by those parties and that such information is accurate. Any such information obtained by AECOM has not been independently verified by AECOM, unless otherwise stated in the Report. AECOM accepts no liability for any inaccurate conclusions, assumptions or actions taken resulting from any inaccurate information supplied to AECOM from others.

The methodology adopted and the sources of information used by AECOM in providing its services are outlined in this Report. The work described in this Report was undertaken between **May 2022** and **November 2022** and is based on the conditions encountered and the information available during the said period. The scope of this Report and the services are accordingly factually limited by these circumstances. AECOM disclaim any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to AECOM's attention after the date of the Report.

The exploratory holes carried out during the fieldwork, which investigate only a small volume of the ground in relation to the size of the site, can only provide a general indication of site conditions. The comments made and recommendations given in this Report are based on the ground conditions apparent at the site of the exploratory holes. There may be exceptional ground conditions elsewhere on the site which have not been disclosed by this investigation and which have therefore not been taken into account in this Report.

The opinions expressed in this Report concerning any contamination found and the risks arising there from are based on current good practice simple statistical assessment and comparison with available soil guideline values, AECOM generic assessment criteria and other guidance values.

It should be noted that the effects of ground and water borne contamination on the environment are constantly under review, and authoritative guidance values are potentially subject to change. The conclusions presented herein are based on the guidance values available at the time this Report was

prepared, however, no liability by AECOM can be accepted for the retrospective effects of any changes or amendments to these values.

Unless otherwise stated in this Report, the assessments made assume that the sites and facilities will continue to be used for their current purpose without significant changes.

Reference to historical Ordnance Survey (OS) maps and/or data provides invaluable information regarding the land use history of a site. However, it should be noted that historical evidence will be incomplete for the period pre-dating the first edition and between the release of successive maps and/or data.

Copyright

© This Report is the copyright of AECOM. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.

Table of Contents

1.	Exec	cutive Summary	0
2.	Intro	ductionduction	2
	2.1	Background	2
	2.2	Objectives	2
	2.3	Proposed development	2
	2.4	Sources of information	4
3.	Site	setting and review of existing data	5
	3.1	General	
	3.2	Location and current land use	5
	3.3	Historical land use	6
	3.3.1	Onsite	
		! Offsite	
	3.4	Geology	
		Made ground	
		Superficial deposits	
		Bedrock	
	3.5	Hydrogeology	
	3.6	Hydrology	
	3.7	Previous ground investigation	
	-	19112 GD Pickles Ltd, 2020, Geoenvironmental Investigation Report	
		2 I19 Exploration Associates, 1980, British Transport Docks Board Immingham	0
	0.7.2	Dock – Eastern Jetty Final Report on Site Investigation S2552	. 12
	3.7.3	I5 Ground Explorations Ltd, 1967, Report No.3722, Exploration of Ground	
		Conditions at Immingham for British Transport Docks Boards	. 12
	3.7.4	I5/I27 The British Transport Docks Board, 1965, Proposed Oil Jetties at	
	_	Immingham, Lincolnshire, Report of Site Investigation	
4.		mary of ground investigation	
	4.1	Introduction	
	4.2	Summary and scope of works	
	4.3	Chemical laboratory testing	. 15
	4.3.1	Soils	. 15
	4.3.2	Leachate	. 15
5.	Enco	ountered ground conditions	. 16
	5.1	Ground profile	. 16
	5.1.1	Made ground	. 16
	5.1.2	? Topsoil	. 17
	5.1.3	Clay and silt (reworked natural)	. 17
	5.1.4	· Peat	. 17
	5.2	Physical evidence of contamination	. 17
	5.3	Groundwater conditions	. 17
6.	Tier :	2 human health risk assessment	. 19
	6.1	General	. 19
	6.2	Tier 2 quantitative risk assessment approach	. 19
	6.3	Results	
	6.3.1	Made ground	
		Reworked natural deposits	
		Asbestos analysis and assessment	
7.		2 controlled waters risk assessment	

	7.1	Tier 2 risk assessment approach	22		
	7.2	Controlled waters receptors	23		
	7.3	Results	23		
8.	Groui	nd gas risk assessment	28		
	8.1	General	28		
	8.2	Ground gas results	28		
	8.2.1	TOC results	28		
	8.2.2	Classification of gas regime	28		
9.	Upda	ted conceptual site model	30		
	9.1	General	30		
	9.2	Potential sources of contamination	30		
	9.3	Potential pathways	31		
	9.4	Potential receptors	32		
	9.5	Potential contamination linkages			
10.	Envir	onmental risk assessment	36		
	10.1	Risk assessment principles and framework	36		
		Evaluation of risk			
		Discussion of risk to receptors			
	10.3.	1 Risk to future site visitors	42		
		2 Risk to on-site workers (within future buildings)			
	10.3.	3 Risk to on-site workers (outdoors)	43		
	10.3.4	4 Risk to offsite human health receptors	43		
	10.3.	5 Risk to controlled waters: surface water	43		
	10.3.0	6 Risk to controlled waters: groundwater	44		
	10.3.	7 Risk to development infrastructure	44		
	10.3.8	8 Risk to construction workers	45		
		9 Risk to flora and fauna			
11.	Conc	lusions	47		
	11.1 Ground conditions				
	11.2	Geoenvironmental conditions	47		
12.	Reco	mmendations	49		
13.	Refer	ences	50		
Draw	ings		51		
Anne	x A Cł	nemical Laboratory Test Certificates	52		
		ial Pit Logs			
		ial Pit Photolog			
		nemical Data Screen			
Anne	x E G	round Gas Assessment using RB17	56		

Drawings

B2429400-JAC-00-ZZ-DR-ZZ-0110

B2429400-JAC-00-ZZ-DR-ZZ-0202

B2429400-JAC-00-ZZ-DR-ZZ-0203

B2429400-JAC-00-ZZ-DR-ZZ-0204

B2429400-JAC-00-ZZ-DR-ZZ-0205

B2429400-JAC-00-ZZ-DR-ZZ-0206

B2429400-JAC-00-ZZ-DR-ZZ-0206

B2429400-JAC-00-ZZ-DR-ZZ-0207

General Arrangement Plans Sheet 4 of 6

General Arrangement Plans Sheet 5 of 6

General Arrangement Plans Sheet 5 of 6

General Arrangement Plans Sheet 6 of 6

B2429400-JAC-00-ZZ-DR-ZZ-0101

Site Location Plan

60664611/GI/002 Exploratory Hole Location Plan

Figures

Figure 3-1	Sub plots of the site*	5
Tables		
Table 3.1	Encountered groundwater conditions in the 2020 GD Pickles GI	10
	Summary of trial pits	
	Summary of encountered strata	
	Summary of groundwater conditions encountered in the trial pits during the GI (2022)	
Table 6.1	Summary of determinands identifying exceedances above GAC in Made Ground	20
Table 7.1	Summary of the Tier 2 exceedances in soil leachate	23
Table 9.1	Description of potential sources of contamination	30
Table 9.2	Potential pathways	31
Table 9.3	Potential receptors	32
	Potential contamination linkages	
Table 10.1	Severity of risk	36
Table 10.2	Probability of risk occurring	37
	B Level of risk	

1. Executive Summary

- 1.1.1 The Immingham Eastern Ro-Ro Terminal (IERRT) development comprises of a new three-berth roll-on / roll-off jetty, a unit load / vehicle storage area, terminal buildings and an internal site bridge to service the embarkation and disembarkation of Ro-Ro traffic. The IERRT project site is in the Port of Immingham.
- 1.1.2 To support the assessment of the Ground Conditions including Land Quality chapter (Chapter 12) of the Environmental Statement (ES) for the IERRT project, this Ground Investigation Report has been produced following a ground investigation undertaken by AECOM and Associated British Ports between 23 May and 24 May 2022. The baseline conditions at the site are summarised in Section 3 of this report. The published geological records indicate the geological sequence at the site comprises Made Ground; superficial deposits (Tidal Flat Deposits, Beach and Tidal Flat Deposits and Devensian Till) and the bedrock of the Flamborough Chalk Formation and Burnham Chalk Formation. The Beach and Tidal Flat Deposits are designated as a Secondary Undifferentiated Aguifer, whilst the Devensian Till is designated as an Unproductive Aquifer. The bedrock is designated as a Principal Aguifer and is therefore considered to be the critical receptor on the site. The site is partially located within the Humber Estuary and the North Beck Drain catchment, and drains are located within the site which may also be receptors to potential contamination.
- 1.1.3 A summary of previous ground investigations is provided in Section 4, including the GD Pickles ground investigation undertaken in 2020 which has been used in conjunction with the results from the ground investigation to form an assessment of ground conditions at the site. Section 4 provides a summary of the ground investigation comprising seven machine excavated trial pits between 1.8 m below ground level (bgl) and 3.3 m bgl, geo-environmental soil sampling and geo-environmental laboratory testing. Section 5 comprises of a summary of the encountered ground conditions from the ground investigation, where Made Ground, topsoil and reworked natural deposits of clay, silt and peat were recorded. Potential olfactory evidence of contamination was reported in TP1 as a slight hydrocarbon odour in Made Ground between 0.2 m bgl and 0.5 m bgl. Groundwater strikes were encountered between 0.8 m bgl and 3.3 m bgl.
- 1.1.4 Section 6 comprises of the Tier 2 Human Health Generic Quantitative Risk Assessment (GQRA). Data from the ground investigation and the GD Pickles ground investigation were combined to form the basis of the assessment. The soil samples were screened against the Generic Assessment Criteria (GAC) for a Commercial / Industrial end-use and a Total Organic Carbon (TOC) of 1.45 3.48%. Exceedances were recorded in samples obtained from Made Ground only, primarily in TP6 (2022 GI) and TP24 (GD Pickles GI, 2020). However, these exceedances were within the same or one order of magnitude above the GAC criteria and are considered to present a Low risk. Chrysotile was encountered at 1.2 m bgl in TP4 in the GI, with a quantification of 0.002%.
- 1.1.5 Section 7 comprises of the Tier 2 Controlled Waters GQRA. Data from the ground investigation and the GD Pickles ground investigation were combined to form the basis of the assessment. The leachate test results were screened against Drinking Water Standards (DWS) and Environmental Quality Standards (EQS) for freshwater. Exceedances were recorded in Made Ground and reworked natural deposits. However, these were mostly within the same, or one order of magnitude above the criteria. Exceedances of ammoniacal nitrogen and chromium (VI) were

within two orders of magnitude above the criteria Therefore, it is recommended that groundwater monitoring, sampling and testing is undertaken as part of confirmatory GI which is being undertaken to corroborate the GI findings and inform detailed design of foundations for the proposed structures at the site. A Detailed Quantitative Risk Assessment (DQRA) may be required depending on the findings of the confirmatory GI.

- 1.1.6 Section 8 comprises of the Ground Gas Risk Assessment which has been undertaken using the maximum Total Organic Carbon (TOC) soil results and in line with guidance provided in "RB17: A Pragmatic Approach to Ground Gas Risk Assessment". Data from the ground investigation and the GD Pickles ground investigation were combined to form the basis of the assessment. The maximum TOC was recorded as 4.34%. Therefore, the site is categorised as Characteristic Situation 3 (CS3). This is defined as a *Moderate* risk from ground gas and its potential accumulation in confined spaces.
- 1.1.7 Section 9 comprises of an updated conceptual site model detailing the sources, pathways and receptors at the site. The GAC exceedances recorded in soil and leachate samples present possible sources of contamination in Made Ground, natural strata, soil leachate and groundwater. The elevated TOC and characterisation of the site as CS3 indicates there is a potential source of ground gas at the site.
- 1.1.8 Section 10 comprises of the environmental risk assessment and discussion of risk to receptors. The risks are considered to range between *Very Low* to *Moderate*, which is considered to be *Minimal / Negligible* to *Tolerable* using the Land Contamination: Risk Management (LC:RM) risk ratings. The *Moderate* risk is associated with ground gas that may present a risk to future site visitors and onsite workers within buildings, construction / maintenance workers and development infrastructure due to the classification of the site as CS3.
- 1.1.9 The conclusions of the report are provided in Section 11 and recommendations for the confirmatory ground investigation are provided in Section 12. In particular, it is noted that the objectives of the confirmatory ground investigation include confirmation of ground and groundwater conditions, provision of data for geotechnical design parameters, further consideration of contamination levels in Made Ground and superficial deposits, and to assist in the identification of geotechnical and / or geo-environmental constraints.

2. Introduction

2.1 Background

- 2.1.1 AECOM Limited (AECOM) has been commissioned by Associated British Ports (hereafter referred to as 'ABP') to produce a Phase 2 Ground Investigation Report (GIR). A ground investigation (GI) was undertaken by AECOM and ABP between 23 May and 24 May 2022 to collect soil samples for chemical testing to support the risk and environmental impact assessment within the Ground Conditions including Land Quality chapter (Chapter 12) of the ES for the landside development of the Immingham Eastern Ro-Ro Terminal (IERRT) project within the Port of Immingham (hereafter referred to as 'the site').
- 2.1.2 A Phase 1 Geo-environmental and Geotechnical Desk Study (Phase I DS) has been prepared by AECOM (October 2022) (Appendix 12.1 in Volume 3 of the Environmental Statement (Application Document Reference number 8.4) and should be read in conjunction with this report.
- 2.1.3 A confirmatory GI is being undertaken. The findings of the confirmatory GI will be assessed and detailed in an interpretative report. The confirmatory GI will corroborate GI findings obtained to date to inform the foundation detailed design of the structures for the proposed development at the site.

2.2 Objectives

- 2.2.1 The key objectives of this report are to:
 - Undertake a review of existing data;
 - Provide a summary of the ground investigation works;
 - Provide a review of the geological and hydrogeological conditions:
 - Undertake human health, controlled waters and gas generic quantitative risk assessments (GQRA) and interpretation of geo-environmental data obtained from trial pit samples and existing geo-environmental data; and
 - Update the Conceptual Site Model and environmental risk assessment presented in the AECOM Phase 1 Desk Study.

2.3 Proposed development

- 2.3.1 The proposed development, hereafter referred to as the 'IERRT project' is designed to service the embarkation and disembarkation of Ro-Ro traffic, possibly with a provision for a small element of passenger use during quieter periods.
- 2.3.2 The IERRT project will involve marine works within the Humber Estuary and landside works on the existing port estate.
- 2.3.3 The following summarises the components of the IERRT project: Marine Works
 - An approach jetty from the shore;
 - A single linkspan bridges located on the approach jetty's bank seat;
 - Two floating pontoons secured in place with reinforced concrete restraint dolphins;
 - Two open piled finger piers positioned perpendicular to each floating pontoon;

- Possible inclusion of vessel impact protection measures comprising an impact protection structure adjacent to the approach jetty to the south of the finder pier if required;
- A capital dredge of the new berth pocket; and
- Disposal of dredged material within the wider Humber Estuary.

Landside Works

- Demolition of four existing buildings within the development site as well as the
 extension of another building. Of the four demolished buildings, two are
 currently used by Malcolm West Forklifts, which will be replaced and reconstructed to the east of the current location The facilities provided by two of
 these buildings and the extension, which are used by Drury's Engineering
 Services, will be moved to another existing adjacent building;
- Site surface improvement works to provide suitable areas to accommodate wheeled cargo, containers, t HGVs and storage;
- Secure fencing around the terminal areas and adequate lighting provision;
- Four storage areas, comprising of the following:
- North storage area with approximately 238 trailer bays and 38 container ground slots;
- Central storage area with approximately 157 trailer bays, 71 staff car parking spaces and 13 equipment parking spaces;
- South storage area with approximately 409 trailer bays, 78 pre-gate parking spaces, 80 staff parking spaces, 40 passenger parking spaces, 14 large passenger parking spaces, 18 tug master parking spaces and marshalling / holding lanes for accompanied freight and passenger vehicles; and
- West storage area with approximately 630 trailer bays.
 - A number of buildings will be constructed to provide appropriate facilities for lorry drivers and passengers, comprising of the following:
- In the south storage area, a two-storey terminal building will be constructed, along with several ancillary buildings including in and out gates, a welfare building for HGV drivers and passengers awaiting embarkation and inspecting and administrative buildings for the UK Border Force.
- In and out gates are proposed for the west storage area.
- A small workshop and fuel station in the central storage area; and
- Two buildings for Malcom West Forklifts in the north storage area.
 - Construction of a substation and frequency converter housing in the north storage area;
 - A new level crossing across the ABP controlled railway to join the southern and central storage areas;
 - Junction improvements for the junction of Robinson Road and East Dock Road, and East Dock Road and East Riverside Road. Robinson Road and Gresley Way will be connected via a new junction;
 - Highway improvements to Gresley Way;
 - Improvement and alteration to the approach to the entrance and exit of Shed 26;

- Provision of other vehicle circulatory and access routes within the IERRT Terminal
- Improvements to the East Gate port entrance, including widening of the existing entrance road, demolition of the existing gate house, construction of a new security gate house to allow an extra inbound lane and widening of the junction between Queens Road and Laporte Road. New wig-wag signals will be installed to control traffic in the event of emergency access being required. The existing layby on the adjacent public highway will be removed and the bus stop will be repositioned. A pedestrian path will be provided between the East Gate and the bus stop;
- A two-span internal bridge will need to be constructed within the port estate to cross over an adjacent access road (Robinson Road) and ABP controlled railway line to connect the north and central storage areas; and
- Appropriate drainage and service infrastructure throughout the new terminal area.

Environmental Enhancements

- Environmental enhancements are proposed for the woodland to the south of Laporte Road named Long Strip to encourage the development of woodland ground flora, crate ecological niches and increase nesting and roosting opportunities for birds and bats; and
- Intertidal enhancements as part of the Outstrays to Skeffling Managed Realignment Scheme. The development at Skeffling is not considered within the Phase 2 GIR as the intertidal enhancement scheme is not within the red line boundary for the IERRT project and has been consented as part of a separate planning application (19/00786/STPLFE).
- 2.3.4 The proposed development is presented as Drawings B2429400-JAC-00-ZZ-DR-ZZ-0110, B2429400-JAC-00-ZZ-DR-ZZ-0202, B2429400-JAC-00-ZZ-DR-ZZ-0203, B2429400-JAC-00-ZZ-DR-ZZ-0204, B2429400-JAC-00-ZZ-DR-ZZ-0205, B2429400-JAC-00-ZZ-DR-ZZ-0206 and B2429400-JAC-00-ZZ-DR-ZZ-0207.

2.4 Sources of information

- 2.4.1 The following sources of information have been referenced in this report:
 - AECOM Immingham Eastern Ro-Ro Terminal Phase 1 Geo-Environmental and Geotechnical Desk Study (2022);
 - British Geological Survey (BGS) Solid and Drift for Partington (Sheet 81 (and including parts of Sheet 82 and 90)) 1:50,000 Geological Map (1991);
 - BGS, 2020, BGS GeoIndex Onshore Map Application. Available at: http://mapapps2.bgs.ac.uk/geoindex/home.html (Accessed: May 2022);
 - BGS Lexicon of Named Rock Units. Available at: https://www.bgs.ac.uk/technologies/the-bgs-lexicon-of-named-rock-units/ (Accessed: May 2022);
 - Environment Agency Catchment Data Explorer. Available at: https://environment.data.gov.uk/catchment-planning (Accessed: May 2022); and
 - Groundsure Report (GS-8247704) (2021).

3. Site setting and review of existing data

3.1 General

3.1.1 The following sections comprise a summary of the IERRT Phase 1 desk study of existing data prepared by AECOM. The Phase 1 desk study should be read in conjunction with this Phase 2 Report.

3.2 Location and current land use

3.1.2 The site is located within the Port of Immingham and is centred on the approximate National Grid Reference TA 20558 15316. A site location plan is presented as Drawing B2429400-JAC-00-ZZ-DR-ZZ-0101. The surface area of the site is approximately 57ha. The site comprises three Sub Plots, see Figure 3.1 in Volume 2 of ES (Application Document Reference number 8.3), Sub Plot 1 covers the northeast area of the Port; Sub Plot 3 covers the southeast area of the Port and Sub Plot 4 covers the southern-western area of the Port. Sub Plot 1 comprises hardstanding for a car park, overground pipelines, a storage yard, and an area of land leased to Drury Engineering Services and PK Construction. Sub Plot 3 currently comprises railway sidings, a storage yards / areas, trailer yard and vacant land. Sub Plot 4 currently is composed of hardstanding used for car parking.

Figure 3-1 Sub plots of the site*

*Sub Plot 2 is no longer part of the development and is therefore not included in this report.

3.2.2 Additional areas of the site include part of the A1173 Queen's Road at the junction with East Gate and the land associated with Long Strip Woodland, an area of woodland, adjacent to the nearby sewage works (see Drawing B2429400-JAC-00-ZZ-DR-ZZ-0204). The Outstrays to Skeffling Managed Realignment (MR) scheme, located on the north bank of the Humber Estuary, is an environmental enhancement scheme associated with the IERRT project. However, the Skeffling site is not considered further in the ground investigation report as this development has been consented under a different planning application (19/00786/STPLFE).

3.2.3 The surrounding land is part of the Port of Immingham. Within the wider Port of Immingham site, there are operational areas with bulk commodities such as liquid fuels, solid fuels, and ores; Ro-Ro freight and in-river jetties (the Eastern and Western Jetties, the Immingham Oil Terminal (IOT), the Immingham Gas Terminal, Immingham Outer Harbour (IOH) and the Humber International Terminal (HIT)). The residential town of Immingham lies approximately 500 m to the southwest of the site.

3.3 Historical land use

3.3.1 Historical mapping has been reviewed to assess the potential for past activities, both on and adjacent to the site, which may have impacted the site's environmental land quality. Historical Ordnance Survey (OS) maps of the site were obtained as part of the Groundsure Report (GS-8247704). The IERRT project site has been part of the wider Port of Immingham since 1912. The findings are summarised as follows:

3.3.1 **Onsite**

- 1884 1930: Railway sidings and infrastructure throughout the site. The Grimsby District Electric Light Railway also crosses the northwest of the site. Buildings are shown on the northern border.
- 1930-1964: Increase in railway infrastructure throughout the site. The building on the northern site border has been demolished. Queens Road is denoted on the maps.
- 1964 1969: Pipelines are denoted in the centre, western area of the site and in the southwest near the railway tracks. Green Lane (later referred to as Laporte Road) is denoted across the northern edge of the Long Strip Woodland.
- 1969 2021: No significant change.

3.3.2 Offsite

- 1884- 1930: The Grimsby District Electric Light Railway is denoted northwest from the site.
- 1930 1964: Construction of railway infrastructure (engine shed and store) and coal hoists. The Eastern Jetty Railway is denoted to the northwest. Sewage works are noted to the east of the Long Strip Woodland.
- 1964 1976: The surrounding area has been extensively developed with tanks; an unspecified depot; an oil storage depot; chemical works, an extension of a jetty, a warehouse; electric sub stations; an oil terminal jetty and a wagon repair shed.
- 1979 1888: Further industrial development comprising of an unspecified depot, unspecified works, and a gas valve compound. A coil hoist is noted as appearing partially removed and disused.
- 2003 2010: The coal hoist and one of the tanks in the oil storage depot are no longer denoted. A roundabout has been constructed to the west of the site.
- 2010 2021: The tanks within the oil storage depot and a works denoted 100m northwest are no longer denoted.

3.4 Geology

3.4.1 For the geological assessment of the site, the BGS 1:50,000 Sheet 81 (including parts of sheet 82 and 90) (Partington) and the GeoIndex Map on the BGS website (accessed 26/05/2022) were reviewed.

3.4.1 Made ground

3.4.2 Made Ground was identified on the BGS GeoIndex 1:50,000 Artificial Ground map across most of the site, apart from a small area to the north of Sub Plot 1, the southeast corner of Sub Plot 3, the area of land around Queens Road and the Long Strip Woodland. The area within Sub Plot 3 that has not been mapped as Artificial Ground on the BGS GeoIndex 1:50,000 map corresponds to the same area as a historical landfill which accepted inert and industrial waste until 31 December 1990 when the licence was surrendered. However, given the existing land use at the site, it is anticipated that Made Ground is present across most of the entire site, apart from the Long Strip Woodland. Some areas of infilled ground are denoted in the southern end of the site and offsite to the west. The infilled ground located to the west of the site is likely associated with a historical landfill that extends to the western site border of Sub Plot 4. The landfill accepted inert, industrial, commercial, and household waste until 26 January 1990 when the licence was surrendered. GD Pickles stated in the 2020 Geo-environmental Investigation Report that Made Ground within Sub Plot 1, which included industrial and inert waste, may be related to the reclaiming of land from the estuary. Made Ground was encountered in previous ground investigations and in the ground investigation, as discussed in Section 5.1.1.

3.4.2 Superficial deposits

- 3.4.3 The BGS maps indicates Tidal Flat Deposits (Clay and Silt) are present across the majority of the site, apart from the bank of the Humber Estuary. Tidal Flat Deposits (Clay and Silt) are described by the BGS Lexicon of Named Rock Units website (accessed: 26/05/2022) as "unconsolidated sediment, mainly mud and/or sand. They may form the top surface of a deltaic deposit. Normally a consolidated soft silty clay, with layers of sand, gravel, and peat."
- 3.4.4 Beach and Tidal Flat Deposits are present along the bank of the Humber Estuary. The BGS Lexicon of Named Rock Units describes these as a composite of Beach Deposits and Tidal Flat Deposits. Beach Deposits are described as "shingle, sand, silt and clay; may be bedded or chaotic; beach deposits may be in the form of dunes, sheets or banks" and Tidal Flat Deposits are described as "commonly silt and clay with sand and gravel layers; possible peat layers; from the tidal zone".
- 3.4.5 The BGS maps indicate Devensian Till is present across the entire site underlying the Beach and Tidal Flat Deposits. No description is provided on the BGS Lexicon of Named Rock Units. The Devensian Till likely comprises of a mixture of clay, sand, gravel, and boulders.

3.4.3 Bedrock

3.4.6 The bedrock comprises of the Burnham Chalk Formation in the northwest area of the site, and the Flamborough Chalk Formation across the remaining areas of the site. The Burnham Chalk Formation is described by the BGS Lexicon of Named Rock Units as "white, thinly bedded chalk with common tabular and discontinuous flint bands; sporadic marl seams." The Flamborough Chalk Formation is described by the BGS Lexicon of Named Rock Units as "white, well-bedded, flint-free chalk with common marl seams (typically one per meter). Common stylolitic surfaces and pyrite nodules."

3.4.7 No geological faults are noted within the vicinity of the site.

3.5 Hydrogeology

- 3.5.1 The Groundsure Report (GS-8247704) indicates the Tidal Flat Deposits and the Devensian Till are classified as an Unproductive Aquifer. Unproductive Aquifers are defined by the Environment Agency as "rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow".
- 3.5.2 The Beach and Tidal Flat Deposits (Undifferentiated) are classified as a Secondary Undifferentiated Aquifer. Secondary Undifferentiated Aquifers are classified by the Environment Agency as being "Assigned where it is not possible to attribute either category A or B to a rock type. In general, these layers have previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type".
- 3.5.3 The Burnham Chalk Formation and Flamborough Chalk Formation are classified as Principal Aquifers. Principal Aquifers are defined by the Environment Agency as "geology of high intergranular and/or fracture permeability, usually providing a high level of water storage and may support water supply/river base flow on a strategic scale. Generally principal aquifers were previously major aquifers".
- 3.5.4 Information in the Groundsure Report (GS-8247704) indicates the superficial aquifer associated with the Beach and Tidal Flat Deposits (Undifferentiated) has a *High* groundwater vulnerability due to the combined classification of a Productive Bedrock Aquifer and Productive Superficial Aquifer along the estuary bank. The remainder of the site has a *Low* groundwater vulnerability due to the combination of an Unproductive Aquifer in the superficial deposits overlying the Principal Bedrock Aquifers.
- The Groundsure Report (GS-8247704) indicates that the southeast corner of the 3.5.5 site is located within a Source Protection Zone (SPZ) SPZ 1 (Inner catchment) and is associated with an active groundwater abstraction point located 63 m southeast of the site boundary. The Environment Agency define an SPZ 1 as being "50-day travel time of pollutant to source with a 50 m default radius". A larger radius of the southeast corner, surrounding the SPZ 1, lies within SPZ 2 (Outer catchment). This is defined by the Environment Agency as being "400-day travel time of pollutant to source. This has a 250 or 500 metres minimum radius around the source depending on the amount of water taken". The remainder of the site lies within SPZ 3 (Total catchment) defined by the Environment Agency as being the "area around a supply source within which all groundwater ends up at the abstraction point. This is the point from where the water is taken. This could extend some distance from the source point". Information on the target strata of the abstraction point is not provided. However, it is assumed that it is located within the Flamborough Chalk Formation.

3.6 Hydrology

3.5.6 The site is partially located within the Humber Estuary. The Environment Agency Catchment Explorer website (Accessed: 26/05/2022) designates the overall rating of the waterbody as 'moderate' with a 'moderate' ecological status, and a chemical status of 'fail'. The site is also located within the North Beck Drain river water body catchment. The current (2019) overall status of this waterbody is 'moderate', with ecological potential of 'moderate', and a chemical status of 'fail'. The Groundsure Report (GS-8247704) indicates 40 unnamed water courses are located within 250 m from the site.

- 3.5.7 Drains were observed in the southern half of Sub Plot 4 in the site reconnaissance undertaken for the Phase 1 Desk Study. These drains flow into an interceptor.
- 3.5.8 The Groundsure Report (GS-8247704) indicates the majority of the site falls into the classification of *very low* to *low* risk of river and coastal flooding. An area of land in the north of the site closest to the River Humber is classified as *medium* risk of river and coastal flooding.

3.7 Previous ground investigation

3.6.1 This section presents a summary of the results of the existing ground investigation data available for areas within the site boundary and in areas of Immingham Dock adjacent to the IERRT project. The chemical data from the GD Pickles ground investigation undertaken in 2020 is combined with data from the ground investigation to form part of the Human Health, Controlled Waters Tier 2 Risk Assessment and Gas Risk Assessment in Sections 6, 7 and 8 of this report.

3.7.1 19112 GD Pickles Ltd, 2020, Geoenvironmental Investigation Report

- 3.6.2 The ground investigation was undertaken between 24 29 February 2020. The locations of the exploratory holes were within Sub Plot 1 and Sub Plot 3. The Gl comprised six no. cable percussion boreholes, one rotary percussive borehole, and 15 no. machine excavated trial pits using a 9-tonne backhoe excavator. In situ CBR tests were undertaken in trial pits where ground conditions allowed. Monitoring wells were installed in two of the cable percussion boreholes (BH03 and BH05) to enable monitoring of groundwater level conditions. The Geoenvironmental Investigation Factual Report is presented as Appendix 12.2 in Volume 3 of the Environmental Statement (Application Document Reference number 8.4).
- 3.6.3 The ground conditions are summarised as follows:
 - Made Ground was encountered in all exploratory locations across the whole site. Made Ground was recorded as variable and, in most areas, appeared to be imported construction /industrial waste. GD Pickles have suggested this could be related to the raising of the land to reclaim land from the estuary. The maximum depth of Made Ground was 5.0 m but generally between 0.8 m and 3.0 m in depth. Perched groundwater was recorded within the Made Ground.
 - Underlying the Made Ground, natural strata of the Tidal Flat Deposits were recorded. The shallow soils often comprised a firm orange, brown sandy CLAY and extended to depths of 3.0 m bgl. Soft grey clays and Silts which are variably organic were recorded beneath the firm orange, brown sandy clay.
 - The Boulder Clay (Devensian Till) underlies the Tidal Flat Deposits and was encountered from circa 10 m and comprised a stiff brown gravelly sandy clay. In RBH1 this was proven to 18.5 m bgl.
 - Beneath the Boulder Clay dense sand and gravel, also part of the Devensian Till sequence, was initially encountered to depths of 19.3 m bgl followed by sand and gravel with a thin layer of blowing sands in RBH1 (whereby sand flowed up the borehole) to 22.5 m bgl. Below this the strata are interpreted in the ground investigation report to be the Chalk Gravels, Putty Chalk and hard White Chalk, the latter encountered at 28 m bgl.
 - No notable groundwater table or seepages was encountered/recorded in Tidal Flat Deposits or the Boulder Clay. A summary of the groundwater conditions encountered is provided in Table 3.1.

- Groundwater under sub-artesian pressure was encountered at 18 m bgl in RBH1. Blowing sands were recorded in RBH1 and caused the failure of Standard Penetration Tests (SPT) at 21 m. The sand rose to 17.8 m bgl.
- Surface water ponding occurred across the south, east and north of the wider site.

Table 3.1 Encountered groundwater conditions in the 2020 GD Pickles GI

Location	Termination Depth	Water Strike (m bgl)	Depth water rose to time period (m bgl)	Strata	Comments
TP01	2	0.9	-	Made Ground	Described as groundwater ingress.
TP03	1	0.8	-	Made Ground	Described as rapid ingress within chalk fill.
TP05	2.4	1.5	Standing at 0.9 m	Made Ground	Described as groundwater ingress from fill / running sands.
TP06	1.5	0.9	0.5	Made Ground	Described as groundwater ingress. Noted that the pit collapsed due to the presence of water and sandy fill.
TP08	2	1.5	1.2	Ingress from the interface between the top of organic Clay and base of Made Ground	Described as groundwater ingress.
TP09	1.8	1.2	-	Made Ground	Water ingress from a stabilised cement layer at 0.25 m bgl and water rose from the base of the excavation.
TP10	2	1.2	-	Made Ground	Described as rapid water ingress.

Location	Termination Depth	Water Strike (m bgl)	Depth water rose to time period (m bgl)	Strata	Comments
BH04	13.5	3.8	3.7	Made Ground	-
RBH1	28.5	20	-	Sand and Gravel	Blowing sands encountered at 20 m bgl, with sand rising to 17.8 m bgl.

Source: GD Pickles Geoenvironmental Investigation Report (2020)

- 3.6.4 Chemical testing was completed as part of the ground investigation. The results of the chemical testing are included in the Human Health and Controlled Waters Tier 2 Risk Assessment and Gas Risk Assessment in Sections 6, 7 and 8 of this report. The following chemical tests were undertaken:
- 3.6.5 The soil tests comprised of the following:
 - 15 Soil Suite Tests which included the following determinands: Arsenic, Boron, Beryllium, Barium, Cadmium, Copper, Chromium (hexavalent), Chromium (total), Lead, Mercury, Nickel, Selenium, Vanadium, Zinc; Cyanide (total), pH Value, Soil Organic Matter and Phenols (monohydric);
 - 15 Asbestos screen and quantification tests;
 - 15 tests for Speciated PAH (USEPA16);
 - 15 phenol tests;
 - 15 total cyanide tests;
 - 15 water soluble boron tests;
 - 11 tests for Total Petroleum Hydrocarbons (TPH CWG); and
 - 8 BRE Special Digest 1 (for buried concrete) tests.
- 3.6.6 The soil leachate comprised of WAC testing of five samples for the following determinands: Arsenic, Barium, Cadmium, Chromium, Copper, Mercury, Molybdenum, Nickel, Lead, Antinomy, Selenium, Zinc, Chloride, Fluoride, Sulphate, Total Dissolved Solids (TDS), Phenol Index and Dissolved Organic Carbon (DOC).
- 3.6.7 The chemical testing results are summarised as follows:
 - Testing indicates that, except in 1 location (TP24) in Yard 6 (west corner of Sub Plot 1), all contaminants were recorded at concentrations that did not exceed the corresponding GAC for a Commercial Land-use. Due to the nature of some of the fill materials, GD Pickles believe this was unexpected.
 - No asbestos containing materials were noted during the investigations. No asbestos was detected in the samples tested.
 - The water-soluble sulphate as SO4 ranged between 98 mg/l and 3130 mg/l, with an average of 1068 mg/l in samples of natural and Made Ground soils. The

- pH varied between 7 and 10.2 (neutral to alkaline), with an average of 9. The site was classified as Design Sulphate Class DS-2 and the Aggressive Chemical Environment for Concrete (ACEC) class as AC-2.
- 3.6.8 The report concluded that based on the dataset available, there was no identified requirement for remediation. Contamination including asbestos may be present in areas not investigated.
- 3.7.2 I19 Exploration Associates, 1980, British Transport Docks Board Immingham Dock Eastern Jetty Final Report on Site Investigation \$2552
- 3.6.9 A GI was undertaken on the eastern jetty located approximately 300 m to the northwest of Sub Plot 1. Four boreholes were constructed to depths between 34.5 m bgl and 40 m bgl. The ground conditions generally comprised interbedded clays, sand, and gravel. One borehole (BH4) reported 5.0 m thickness of Made Ground comprising slag with silt, sand, and cobbles and boulders of clay. Chalk was not encountered in the GI.
- 3.7.3 I5 Ground Explorations Ltd, 1967, Report No.3722, Exploration of Ground Conditions at Immingham for British Transport Docks Boards
- 3.6.10 The site investigation was carried out in April 1967 to determine the ground conditions at Immingham for British Transport Docks Boards. The nearest borehole was drilled on land approximately 100 m east from Sub Plot 1, and the remaining boreholes were drilled in the Humber Estuary. The ground conditions are summarised here:
 - Soft alluvial deposits containing peat were reported near to the surface. These
 were underlain by boulder clay, which in turn was underlain by interglacial
 deposits and then a second strata of boulder clay;
 - The interglacial deposits were recorded as primarily comprising sandy clays and laminated clay, with a layer of sand or gravel beneath the upper boulder clay unit; and
 - The superficial deposits were underlain by chalk which was encountered at levels between -84 ft (25.6 m) below ordnance datum (bOD) and -91 ft (27.7 m) bOD.
- 3.7.4 I5/I27 The British Transport Docks Board, 1965, Proposed Oil Jetties at Immingham, Lincolnshire, Report of Site Investigation
- 3.6.11 A ground investigation was carried out, from 6 August to 11 September 1965, at Immingham Dock at Habrough Marsh (Site C) and South Killingholme (Site B) on the instruction of Rendell, Palmer & Tritton, consulting engineers to the British Transport Docks Board. The Habrough Marsh site is located mostly offshore within the Humber Estuary to the north of Sub Plot 1, although one landside borehole was drilled approximately 600 m east of Sub Plot 1. The South Killingholme site is located approximately 1.3 km west of Sub Plot 1, with two boreholes on land and the remaining boreholes within the Humber Estuary. The ground investigation was undertaken to support the proposed construction of an oil jetty at Immingham on the River Humber. A total of 17 boreholes were sunk to depths from 30 ft (9.1 m) bOD to 106 ft (32.3 m) bOD and the logs showed the following general strata sequence:
 - Alluvium (very soft to soft organic silty clay);

- Laminated Clay (firm to stiff, laminated clay with pockets and partings of silt and fine sand);
- Boulder Clay (firm to hard, silty clay with fine to medium gravel including chalk fragments);
- Sand and gravel (loose to medium, dense, sand and gravel including chalk fragments; and
- Chalk (fissured white chalk). At the Habrough Marsh site, the chalk was encountered between -76.5 ft (23.3 m) bOD and -122ft (37.2 m) bOD. Boreholes LB1, MB6 and MB7 (drilled to -60.2 ft (18.3 m) bOD, --127.5 ft (38.8 m) bOD and -124.5 ft bOD (37.9 m), respectively) did not encounter chalk. At the South Killingholme site, chalk was encountered between -66.7 ft bOD (20.3 m) and -77 ft bOD (23.5 m), although boreholes MB9 (drilled to -89.2 ft (27.2 m) bOD) and MB13 (drilled to -66 ft (20.1m) bOD) did not prove chalk.

4. Summary of ground investigation

4.1 Introduction

4.1.1 ABP carried out an intrusive ground investigation (GI) between 23 May and 24 May 2022. The ground investigation comprised of trial pit excavations and soil sampling. AECOM provided an engineer to undertake soil sampling and soil logging of the trial pits. The GI was undertaken to inform the assessment of the Ground Conditions including Land Quality chapter of the Environmental Statement for the landside development of the IERRT project.

4.2 Summary and scope of works

- 4.2.1 The purpose of the GI was to evaluate the extent, nature and geo-environmental properties of the underlying ground conditions and to help inform the basis of the confirmatory GI that is currently being undertaken at the time of writing for the purposes of detailed design.
- 4.2.2 The main objectives were:
 - To determine the sequence of strata in the shallow sub-surface:
 - Investigate the nature of Made Ground present at the site;
 - Investigate the nature of the underlying natural ground (Tidal Flat Deposits, Beach, and Tidal Flat Deposits and Devensian Till) where occurring within the depth range of the trial pits;
 - To obtain soil samples for chemical laboratory testing; and
 - Undertake a range of suitable soil and leachate chemical tests to inform any geo-environmental assessment.
- 4.2.3 The summary of the scope of the GI was as follows:
 - Seven machine excavated trial pits;
 - Soil logging to British Standards Institution Publication BS5930:2015+A1:2020
 "Code of practice for ground investigations";
 - Soil sampling; and
 - Geo-environmental laboratory testing.
- 4.2.4 A summary of the trial pit locations and termination depths is provided in Table 4.1. An exploratory hole location plan is presented as Drawing 60664611/XGI/002. The trial pit logs are presented as Annex B and the trial pit photologs are presented in Annex C.

Table 4.1 Summary of trial pits

Trial Pit	Easting and Northing	Depth (m)	
TP1	519369, 415545	3	
TP2	519604, 415389	3	
TP3	519895, 415240	2.9	
TP4	520249, 415023	1.8	
TP5	520400, 415293	3.3	

Trial Pit	Easting and Northing	Depth (m)
TP6	520505, 415373	3
TP7	520761, 415798	3

4.3 Chemical laboratory testing

4.3.1 Chemical samples were taken at locations across the site and from a range of encountered strata. The range of test results received on soil and leachate and samples are detailed in the following sections. The chemical testing certificates are presented as Annex A.

4.3.1 Soils

- 4.3.2 The soil tests comprised of the following:
 - 28 Soil Suite Tests which included the following determinands: Arsenic, Boron, Cadmium, Copper, Chromium (hexavalent), Chromium (total), Iron, Lead, Mercury, Nickel, Selenium, Zinc; Cyanide (total), Cyanide (free), Thiocyanate, pH Value, Ammoniacal Nitrogen, Soil Organic Matter, Phenols and Fraction of Organic Carbon;
 - 28 Asbestos screen and quantification tests;
 - 28 tests for Speciated PAH (USEPA16);
 - 16 tests for Total Petroleum Hydrocarbons (TPH CWG);
 - 16 tests for Volatile Organic Compounds (VOC);
 - 16 tests for Semi-Volatile Organic Compounds (SVOC); and
 - 16 tests for Phenols (Speciated).

4.3.2 Leachate

- 4.3.3 The leachate tests comprised of the following;
 - 16 Soil Leachate Tests, which included the following determinands: Arsenic, Boron, Cadmium, Calcium, Chloride, Copper, Chromium (hexavalent), Chromium (total), Iron, Lead, Mercury, Nickel, Selenium, Zinc, Ammoniacal Nitrogen, Cyanide (total), Cyanide (free), Thiocyanate, Phenol Index, pH, and Dissolved Organic Carbon;
 - 16 Tests for Speciated PAH (USEPA16) Leachate;
 - 16 tests for Total Petroleum Hydrocarbons (TPH CWG). However, results were only available for C6 to C10 Aliphatic and Aromatic determinands as there was insufficient sample to complete the full suite;
 - 16 tests for Volatile Organic Compounds (VOC);
 - 16 tests for Semi-Volatile Organic Compounds (SVOC); and
 - 16 tests for Phenols (Speciated).

5. Encountered ground conditions

5.1 Ground profile

- 5.1.1 The records of the trial pits indicate a consistent sequence of shallow strata encountered during the GI.
- 5.1.2 Table 5.1 presents the summary of the strata encountered in Sub Plot 1, Sub Plot 3, and Sub Plot 4. The trial pit logs are presented in Annex B and a photolog from the GI is presented as Annex C.

Table 5.1 Summary of encountered strata

	Top of Strata (m bgl)		Depth to base (m bgl)		Thickness (m)	
Strata	Min	Max	Min	Max	Min	Max
Topsoil	0	-	0.05	0.1	0.05	0.1
Made Ground	0	0.1	0.3	3.2	0.3	3.2
Clay (Reworked Natural)	0.3	1.4	_*	3*	0.3*	1.9*
Silt*** (Reworked Natural)	0.6**	1.1**	1.1**	1.1**	0.5**	-
Peat	1.9	3.2	2.0	3.3*	0.1	0.1*

^{*}Base not proven. **Only encountered in one trial pit. ***Dip of strata observed from the south of the trial pit to the north of the trial pit.

5.1.3 The natural strata of the Tidal Flat Deposits, Beach and Tidal Flat Deposits and Devensian Till was not encountered with the depth range of the trial pits. It could not be proven whether the peat deposits form the top of the Tidal Flat Deposits.

5.1.1 Made ground

- 5.1.4 Made Ground was encountered in all exploratory hole locations with varying thicknesses between 0.3 m and 3.2 m to a maximum depth of 3.2 m bgl. The primary constituent of Made Ground was sandy gravel or gravel, often described as fine to course and rounded to angular gravel, with fine to coarse sand. In TP5 and TP6, the Made Ground also comprised of slightly sandy slightly gravelly clay with gravel and sand and occasional fragments of peat. Made Ground in TP7 comprised of cobbley gravelly sand. Fragments of Terram geotextile were also encountered in TP1, TP3, TP4 and TP6. TP4 is located on the edge of an historical landfill.
- 5.1.5 The Made Ground contained anthropogenic material such as clinker, slag, coal, brick and wood. In TP4 and TP6 the anthropogenic content was variable and comprised of bricks, crushed stone, rebar, cables, pipes, plastic bags, plastic sheeting and plastic-coated fibre glass sheets. In addition to the anthropogenic material, the gravel comprised of back fissile mudstone, coal and chalk. Reworked natural clay was encountered at greater depths.

5.1.2 Topsoil

5.1.6 Topsoil was encountered in two exploratory hole locations (TP6 and TP7) overlying Made Ground with thicknesses between 0.05 m and 0.1 m to a maximum depth of 0.1 m bgl.

5.1.3 Clay and silt (reworked natural)

- 5.1.7 Clay was encountered in five exploratory hole locations (TP1, TP2, TP3, TP6 and TP7) with thicknesses between 0.3 m and 1.9 m to a maximum depth of 3.0 m bgl, although the base was not proven.
- 5.1.8 The clay encountered in the five exploratory hole locations was described as reworked natural clay, that is soft to stiff. In most locations, the clay was described as slightly silty or mottled, although it was described as slightly sandy slightly silty clay in TP3 and slightly sandy gravelly clay in TP6. Lenses of sand were observed in TP6. The gravels ranged from fine to medium angular black mudstone and well-rounded white chalk. Rootlets were observed within clay in TP2.
- 5.1.9 Silt was encountered in TP7 between 0.6 m bgl and 1.1 m bgl with a thickness of 0.5 m. In TP1, dark grey to black thinly interbedded black bands of silt were observed within clay between 2.5 m bgl and 3 m bgl.
- 5.1.10 Silt was described as soft to firm brown slightly gravelly sandy silt in TP7, with fine to medium gravel which is subrounded to angular. The gravel comprised of white chalk and black fissile mudstone.
- 5.1.11 These deposits are considered to be reworked natural ground.

5.1.4 Peat

- 5.1.12 Peat was encountered in four exploratory hole locations (TP2, TP3, TP5 and TP6) with a thickness of 0.1 m and a maximum depth of 3.3 m bgl. However, in TP5 the base of the peat was not proven. In TP6, the peat was recorded as a discontinuous layer. It could not be proven whether the peat forms part of the Tidal Flat Deposits.
- 5.1.13 Peat was generally described as a firm, brown to black and slightly fibrous to fibrous peat.

5.2 Physical evidence of contamination

5.2.1 Olfactory evidence of contamination was reported in TP1 as a slight hydrocarbon odour. This was identified within Made Ground between 0.2 m bgl and 0.5 m bgl.

5.3 Groundwater conditions

5.3.1 Water strikes were encountered in exploratory hole locations during the trial pit excavation. A summary of the strikes encountered are provided in Table 5.2.

Table 5.2 Summary of groundwater conditions encountered in the trial pits during the GI (2022)

Location	Termination Depth (m bgl)	Water Strike (m bgl)	Depth water rose to time period (m bgl)	Strata	Comments
TP4	1.8	1.8	1.6 (10 minutes)	Made Ground	Trial pit terminated at 1.8 m due to water ingress.
TP5	3.3	3.3	3.2 (20 minutes)	Peat	Water ingress observed from the base of the pit.
TP6	3	0.8	-	Made Ground (terram)	Water seepage observed along terram within Made Ground. This did not fill the base of the trial pit.
TP7	3	1.8		Clay	Water encountered at 1.8 m bgl which flowed to the base of the trial pit at 3 m bgl.
		2.1		Clay	Water encountered at 2.1 m which flowed to the base of the trial pit at 3 m bgl.
					The groundwater at the base of the pit rose to 2.8 m bgl after 20 minutes.

6. Tier 2 human health risk assessment

6.1 General

6.1.1 The Tier 2 Human Health Risk Assessment has been undertaken using chemical data obtained during the GI and the GD Pickles GI undertaken in 2020. The GD Pickles Geo-environmental Investigation Report and laboratory certificates are presented as Appendix 12.2 in Volume 3 of the IERRT Environmental Statement.

6.2 Tier 2 quantitative risk assessment approach

- 6.2.1 Where the conceptual site model identifies one or more complete pollutant linkage(s) with respect to human health, it is often necessary to clarify the risk posed by that pollutant linkage by comparison of reported concentrations with guideline values that represent acceptable concentrations. This includes assessing risks to human health at a generic level termed 'Generic Quantitative Risk Assessment' (GQRA) or 'Tier 2' of 'Stage 1' in the Environment Agency's Land Contamination Risk Management (LCRM), updated in April 2021 (Environment Agency, 2021). AECOM has adopted a prescribed methodology for assessing risks to human health at this GQRA stage.
- 6.2.2 It is considered, based on the proposed land use of the site, that the Generic Assessment Criteria (GAC) for a commercial / industrial is used to serve as a conservative initial screen to assess the potential risks to human health. The GAC for 1.45 3.48% Total Organic Carbon (TOC) has been selected as the most conservative set of screening values. The average Soil Organic Matter from samples tested in the GI and the GD Pickles GI was calculated as 3.23%, which was converted to a TOC value of 1.9%, therefore the GAC for 1.45 3.48% was used.
- 6.2.3 Five samples from the 2022 GI recorded a SOM value of >43%. These results were recorded within Made Ground samples in TP1, TP2 and TP7 of the GI. The Made Ground comprised of gravel in TP1, with terram, probable clinker and slag, occasional brick and crushed stone where the sample was collected. In TP2, the sample was collected from Made Ground comprising of clay and rounded to angular coal gravel. In TP7, the sample of Made Ground was collected within a layer of sand with chalk cobbles, wood, brick, slag, clinker and coal. Peat deposits were encountered in TP2 at a depth of 2.6 m bgl, which is 1.8 m deeper than the sample collected at 0.8 m bgl with a SOM of >43%. The laboratory notes indicated the calibration range and maximum size of dilution prevented the SOM content of the samples from being quantified, therefore, this data should only be used for indicative purposes. As a result, all samples with an SOM content of >43% were omitted from the screening.
- 6.2.4 In accordance with LCRM, AECOM has adopted the following hierarchy of published sources for Tier 2 Generic Assessment Criteria (GAC) for soil:
 - LQM/CIEH Suitable 4 Use Levels (2015). Commercial / Industrial. Inorganic;
 - LQM/CIEH Suitable 4 Use Levels (2015). Commercial / Industrial. 1.45 3.48%
 TOC;
 - EIC/AGS/CL: AIRE GAC. Commercial / Industrial, Sandy Loam, 1.45 3.48% TOC:
 - AECOM GAC, modified EIC. Commercial / Industrial, Sandy Loam, 1.45 3.48% TOC;

- Defra (2014) SP1010: Development of Category 4 Screening Levels for Assessment of Land Contamination – Policy Companion Document, December 2014. Commercial / Industrial. 1.45 – 3.48% TOC;
- Defra (2014) SP1010: Development of Category 4 Screening Levels for Assessment of Land Contamination – Policy Companion, Document 2014. Commercial / Industrial. 1.45 – 3.48% TOC; and
- US Environmental Protection Agency, Regional Screening Levels, May 2020. 1.45 3.48% TOC (no vapours).

6.3 Results

- 6.3.1 Soil samples from each location were analysed for a range of determinands and screened against Human Health Generic Acceptance Criteria (GAC) for Commercial / Industrial Land Use for a sandy loam with a TOC of 1.45 3.48%. The results of the GI undertaken by ABP have been assessed with the geoenvironmental results from the GD Pickles GI undertaken in 2020. The Tier 2 Screening Table for soil samples are presented in Annex D with the results discussed in the following sections.
- 6.3.2 Some of the soil samples obtained from the 2022 GI used in the laboratory analysis were a non-standard volume / mass. The laboratory used a raised detection limit when analysing some of the determinands and some determinands had the accreditation removed. Further information on the determinands affected are provided in the laboratory certificates in Annex A.

6.3.1 Made ground

6.3.3 Fourteen samples of Made Ground from the GD Pickles 2020 GI and eleven samples of Made Ground from the GI undertaken in May 2022 were analysed for a suite of determinands. A summary of the determinands which identified exceedances above GAC are presented in Table 6.1.

Table 6.1 Summary of determinands identifying exceedances above GAC in Made Ground

Determinand	No. of samples Exceeding GAC / No. of samples Analysed	GAC (mg/kg)	Recorded Concentration Range (mg/kg)	Order of Magnitude above GAC criteria
Benzo(a)anthracene	2 / 25	170	<0.05 – 190	Same order of magnitude
Benzo(a)pyrene	3 / 25	35	<0.05 - 150	1 order of magnitude
Benzo(b)fluoranthen e	3 / 25	44	<0.05 – 150	1 order of magnitude
Dibenzo(a,h)anthrac ene	2 / 25	3.6	<0.05 – 22	1 order of magnitude
4-Chloroaniline	1 / 11	11	<0.6 – 15.1	Same order of magnitude

All of the GAC exceedances, apart from 4-Chloroaniline, were recorded within a sample of Made Ground at 0.15 m bgl depth within TP6 (northeast corner of Sub Plot 1) from the 2022 GI and within a sample from TP24 (western extent of Sub-Plot 1) between 0.4 m bgl and 0.7 m bgl from the 2020 GD Pickles GI. Gravel of a probable clinker and crushed stone origin was encountered in TP6 at the depth of the sample. Various anthropogenic material was encountered in TP24 between 0.4 m bgl and 0.7 m bgl, including bricks, tiles and a plastic bag. A hydrocarbon odour was also observed. The exceedances were within the same or one order of magnitude above the GAC criteria. Therefore, the risk in the context of a commercial / industrial development is considered to be *low*.

6.3.2 Reworked natural deposits

6.3.5 Seventeen samples of reworked natural from the 2022 GI and one sample of clay from the 2020 GD Pickles GI were analysed for a suite of contaminants. The results of the screening indicated that there were no exceedances against their corresponding GACs.

6.3.3 Asbestos analysis and assessment

6.3.6 A total of twenty-eight samples from the 2022 GI and fifteen samples from the 2020 GD Pickles GI were tested for asbestos from depths ranging between 0.05 m bgl and 3.3 m bgl across the site. Chrysotile was encountered at 0.002% in TP4 of the 2022 ground investigation at a depth of 1.2 m bgl. As noted in CIRIA C733 'Asbestos in Soil and Made Ground: A Guide to Understanding and Managing Risks', this is considered to present no risk if the asbestos remains at depth and hardstanding is present in the area.

7. Tier 2 controlled waters risk assessment

7.1 Tier 2 risk assessment approach

- 7.1.1 Soil leachate datasets have been evaluated against the following hierarchy of criteria for the surface watercourse or groundwater receptor in order to assess potential risks to controlled waters:
 - The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015 - AA-EQS Inland;
 - The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015 MAC-EQS Inland;
 - The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015 - Freshwater Standards;
 - The Water Environment (River Basin Management Planning etc.)
 (Miscellaneous Amendments) (Scotland) Regulations 2015. Scottish SI 2015
 No. 211. AA-EQS Inland;
 - The Water Environment (River Basin Management Planning etc.)
 (Miscellaneous Amendments) (Scotland) Regulations 2015. Scottish SI 2015
 No. 211. MAC-EQS Inland;
 - SEPA Supporting Guidance (WAT-SG-53) Environmental Quality Standards for Discharges to Surface Waters. v6. Dec 2015. Fresh EQS – AA;
 - SEPA Supporting Guidance (WAT-SG-53) Environmental Quality Standards for Discharges to Surface Waters. v6. Dec 2015. Fresh EQS – MAC;
 - The Water Framework Directive (Classification, Priority Substances and Shellfish Waters) Regulations (Northern Ireland) 2015. AA-EQS Inland;
 - The Water Framework Directive (Classification, Priority Substances and Shellfish Waters) Regulations (Northern Ireland) 2015. MAC-EQS Inland;
 - The Water Framework Directive (Classification, Priority Substances and Shellfish Waters) Regulations (Northern Ireland) 2015 - Freshwater Standards;
 - European Union Environmental Objectives (Surface Waters) (Amendment)
 Regulations 2015. S.I. No. 386 of 2015. Ireland AA-EQS Inland;
 - European Union Environmental Objectives (Surface Waters) (Amendment) Regulations 2015. S.I. No. 386 of 2015. Ireland MAC-EQS Inland; and
 - PNEC derived for EU REACH registration dossiers Freshwater.
- 7.1.2 A conservative Tier 2 Risk Assessment was undertaken to compare the soil leachate datasets to the criteria detailed above to identify whether any of the samples had recorded elevated concentrations of metals, inorganic or organic determinands compared to the above hierarchy of criteria. The dataset assessed comprised the results from the 2022 GI soil leachate testing results and Waste Acceptability Criteria (WAC) leachate test results from the GD Pickles GI.
- 7.1.3 Laboratory chemical analysis data from the recent GI and the GD Pickles GI undertaken in 2020 has been used in the analysis of risk to control waters. It should be noted that for a risk to be present then a viable contaminant linkage should be identified between the source and receptor. It is possible that a risk to controlled waters may be identified which is not a direct impediment to the

development and this will be stated in the conclusions of the report. The results of the leachate screening for the water environment are presented in Annex D.

7.2 Controlled waters receptors

- 7.2.1 The geology at the site comprises of Made Ground, Tidal Flat Deposits (Clay and Silt), Beach and Tidal Flat Deposits, Devensian Till and the Burnham Chalk Formation and Flamborough Chalk Formation. Significant thicknesses of superficial deposits overlie the bedrock, with chalk encountered within the site boundary between 22 m bgl and 31.09 m bgl based on historical boreholes and the GD Pickles 2020 GI records. The superficial Tidal Flat Deposits and Devensian Till deposits are classified as an Unproductive Aguifer, and the Beach and Tidal Flat Deposits are designated as a Secondary Undifferentiated Aquifer. The bedrock geology of the Burnham Chalk Formation and Flamborough Chalk Formation are classified as Principal Aquifers. The Groundsure Report (GS-8247704) indicates a SPZ 1 (Inner catchment), SPZ 2 (Outer catchment) and SPZ 3 (Total catchment) are located within the site boundary, associated with an active groundwater abstraction point located approximately 63 m southeast from the site. The abstraction is likely within chalk bedrock. However, this has not been confirmed. The site is partially located within the Humber Estuary and North Beck Drain river body catchment. There are also forty unnamed watercourses within 250 m from the site.
- 7.2.2 These represent receptors of potential controlled waters contamination. The underlying Principal Aquifer is considered to be the most sensitive receptor; therefore, the leachate samples were screened against Drinking Water Standards (DWS) and Environmental Quality Standards (EQS) Freshwater criteria.

7.3 Results

- 7.2.3 Table 7.1 summarises the exceedances for metals, organic and inorganic determinands in the samples. The results comprise of leachate results from the 2022 GI and the 2020 GD Pickles GI. However, it should be noted that the leachate ratio for the 2022 GI results is 2:1, and the leachate ratio for the GD Pickles data is 10:1. The Environment Agency guidance document Remedial Targets Methodology: Hydrogeological Risk Assessment for Land Contamination (2006) recommends that a 2:1 ratio is used to assess risk from leachable contamination.
- 7.2.4 Some of the soil samples obtained from the 2022 GI used in the laboratory analysis were a non-standard volume / mass. The laboratory used a raised detection limit when analysing some of the samples. Some determinands had the accreditation removed. Further information on the determinands affected are provided in the laboratory certificates in Annex A. There was also insufficient sample to conduct leachate analysis of TPH determinands.

Table 7.1 Summary of the Tier 2 exceedances in soil leachate

Determin and	Uni ts	DWS	-			Recorded Concentrati on Range	Magnitu de above EQS Freshw
				DWS	EQS		ater

Made Ground

Determin and	Uni ts	DWS	EQS Freshw ater	No of Exceeda nces / No of Results DWS	No of Exceeda nces / No of Results EQS	Recorded Concentrati on Range	Order of Magnitu de above DWS	Order of Magnitu de above EQS Freshw ater
Arsenic*	mg/ I	0.01	0.05	3 / 12	0 / 12	<0.001 – 0.0434	Same order of magnitu de	-
Copper*	mg/ I	2	0.001	0 / 12	4 / 12	<0.001 – 0.053	-	1 order of magnitu de
Lead*	mg/ I	0.01	0.0012	0 / 12	4 / 12	<0.001 – 0.008	-	Same order of magnitu de
Nickel*	mg/ I	0.02	0.004	0 / 12	5 / 12	<0.0003 – 0.0092	-	Same order of magnitu de
Chromium * (Total)	mg/ I	0.05	-	1 / 12	-	<0.001 – 0.138	1 order of magnitu de	-
Zinc*	mg/ I	6	0.0109	0 / 12	3 / 12	<0.002 – 0.019	-	Same order of magnitu de
Ammonia cal Nitrogen	mg/ I	-	0.3	-	4/7	<0.01 – 17.4	-	2 orders of magnitu de
Chromium VI	mg/ I	0.05	0.0034	1 / 12	3 / 12	<0.003 – 0.104	1 order of magnitu de	2 orders of magnitu de
Antinomy*	mg/ I	0.005	-	2/5	-	<0.0017 – 0.017	1 order of magnitu de	-
Fluoride*	mg/	1.5	1	4/5	5/5	1.3 – 7.6	Same order of magnitu de	Same order of magnitu de
Sulphate*	mg/	250	400	3/5	3/5	180 – 1400	1 order of	1 order of

Determin and	Uni ts	DWS	EQS Freshw ater	No of Exceeda nces / No of Results DWS	No of Exceeda nces / No of Results EQS	Recorded Concentrati on Range	Order of Magnitu de above DWS	Order of Magnitu de above EQS Freshw ater
							magnitu de	magnitu de
Reworked	Natu	ıral Dep	osits (Cla	ay, Clay witl	h Peat and	Silt)		
Arsenic	mg/ I	0.01	0.05	4/9	1/9	<0.001 – 0.052	Same order of magnitu de	Same order of magnitu de
Copper	mg/ I	2	0.001	0/9	3/9	<0.001 – 0.002	-	Same order of magnitu de
Lead	mg/ I	0.01	0.0012	0/9	1/9	<0.001 – 0.002	-	Same order of magnitu de
Nickel	mg/ I	0.02	0.004	0/9	2/9	<0.001 – 0.007	-	Same order of magnitu de
Zinc	mg/ I	6	0.0109	0/9	1/9	0.002 – 0.013	-	Same order of magnitu de
Boron	mg/ I	1	2	2/9	0/9	0.05 – 1.24	Same order of magnitu de	-
Iron	mg/ I	0.2	1	2/9	1/9	<0.01 – 4.14	1 order of magnitu de	Same order of magnitu de
Ammonia cal Nitrogen	mg/ I	-	0.3	0/9	5/9	0.2 – 9.9	-	1 order of magnitu de
Chloride	mg/ I	250	250	1/9	1/9	3 - 313	Same order of magnitu de	Same order of magnitu de
Chromium VI	mg/ I	0.05	0.0034	0/9	1/9	<0.003 – 0.01	-	1 order of

Determin and	Uni ts	DWS	EQS Freshw ater	No of Exceeda nces / No of Results DWS	No of Exceeda nces / No of Results EQS	Recorded Concentrati on Range	Order of Magnitu de above DWS	Order of Magnitu de above EQS Freshw ater
								magnitu de
Thiocyana te	mg/	0.004	-	1/9	-	<0.2 – 0.82	2 orders of magnitu de	-
Total Cyanide	mg/ I	0.05	0.001	0/9	2/9	<0.02 - 0.02	-	1 order of magnitu de

^{*}Exceedances include a combination of results from the 2022 GI data and the 2020 GD Pickles GI data which have difference in leachate ratios.

- 7.2.5 Exceedances of ammoniacal nitrogen were recorded in Made Ground and reworked natural deposits in TP1, TP2 and TP6 in the 2022 GI. This indicates the source of elevated ammoniacal nitrogen is within Made Ground. Exceedances of nickel in TP2 and copper in TP7 were also recorded within Made Ground and reworked natural deposits, indicating there is a source of elevated determinands within Made Ground in these exploratory hole locations and a pathway to the reworked natural deposits.
- 7.2.6 The exceedances of DWS and EQS Freshwater criteria are mostly within the same order of magnitude, or one order of magnitude above the criteria. Ammoniacal nitrogen, thiocyanate and chromium (VI) were within 2 orders of magnitude. The elevated concentration of ammoniacal nitrogen may be associated with nearby ammoniacal nitrogen storage observed during the site reconnaissance. However, it is more likely to be associated with Made Ground and agricultural use of nitrogen fertilizers in the wider area, as AECOM are not aware of incidents of spillage or leakage at the storage facility. Groundwater monitoring, sampling and testing is being undertaken at as part of the confirmatory ground investigation. A Detailed Quantitative Risk Assessment (DQRA) will be undertaken if considered necessary. However, the following comments are pertinent for any further DQRA effort:
 - The Chalk aquifer present beneath the site and surrounding area is overlain by a substantial thickness of Glacial Till and Tidal Flat Deposits, materials of low permeability. The Chalk therefore has considerable protection from the risk of a downward migration pathway for contaminated shallow groundwater and / or surface water.
 - It can be anticipated that the clay dominated Glacial Till has considerable attenuating capacity against downward migration of soluble pollutants which provides protection to the Chalk. A DQRA will necessarily take this into account.
 - Evidence from the groundwater observations set out in Table 5.2, and from
 review of the Pickles site investigation, indicates that there is perched water
 present intermittently in the Made Ground and the Tidal Flat Deposits. Given
 the low-lying coastal setting of the site, the hydraulic gradient applying to the
 perched water is likely to be very shallow, and this combined with the relatively

Project number: 60664611

low permeability of the deposits will thus lead to slow potential travel times for any pollutants that may be within the perched water. A DQRA will necessarily take this into account.

8. Ground gas risk assessment

8.1 General

- 8.1.1 The generation or migration of ground gases from natural sources can pose a major hazard to structures if the gases are able to accumulate within them. In terms of the proposed development, the main risks are that ground gases may accumulate within any enclosed structures or beneath any pavements.
- 8.1.2 For this assessment, Total Organic Carbon (TOC) of Made Ground has been compared to the criteria in Table 1 in CL:AIRE (2012) "RB17: A Pragmatic Approach to Ground Gas Risk Assessment". The RB17 document describes an approach to assess the ground gas risk at a site using the maximum TOC content of Made Ground as an alternative to undertaking gas monitoring within wells to conduct a ground gas risk assessment. It is recommended that a combination of forensic description and laboratory testing is used to determine a limiting value of TOC, and a reduction factor is applied for the degradable portion of TOC, particularly where ash, coal and clinker are encountered.
- 8.1.3 Table 1 in RB17 determines the Characteristic Situation using the thickness of Made Ground (maximum 5 m and average of less than 3 m), the duration of time that Made Ground has been in place (either less than 20 years or greater than 20 years) and the maximum TOC content of Made Ground (less than or equal to 1% up to less than or equal to 6%).

8.2 Ground gas results

- 8.2.1 The ground gas risk assessment within this Phase 2 report adopts a conservative approach. The material encountered in the 2022 GI included clinker and coal which can result in high TOC values that may not be representative of the potential gas emissions, as stated in RB17. For the purpose of this assessment, a reduction factor to account for material that is not degradable and can result in high TOC has not been applied to adopt a conservative approach.
- 8.2.2 As noted previously in Section 5.1, five samples from the 2022 GI recorded a SOM value of >43% which have been excluded from the analysis as they are indicative results only. Therefore, a conservative approach has been applied and a limiting value for TOC has not been determined.

8.2.1 TOC results

8.2.3 The Fraction of Organic Carbon (FOC) and SOM results from the 2022 GI and the 2020 GD Pickles GI were converted to TOC. The TOC values within Made Ground from both the 2022 GI and the 2020 GD Pickles GI ranged between 0.26% and 4.34%. The average TOC across a total of eighteen samples from both GIs has been calculated as 2.34%. The results are presented in Annex E.

8.2.2 Classification of gas regime

8.2.4 It is assumed that Made Ground has been in place for greater than 20 years at the site. Using the maximum TOC value of 4.34% as recommended in Table 1 of RB17, the site would be classified as a Characteristic Situation CS3. CIRIA C665 (2007) "Assessing Risks Posed by Hazardous Ground Gases to Buildings" defines Characteristic Situation CS3 as a 'moderate' risk. As described above the carbonaceous content of the Made Ground is variable. Peat deposits could also be a source of ground gas but given it will have been in place for a very long time as a natural deposit its potential to emit gas in significant concentration and flow rate is

probably limited. There is a historical landfill close to the boundary of Sub Plot 4, the gas emission status of which is uncertain. The Chalk provides a plausible source of carbon dioxide through oxidation of its carbonate content, although the quantity and flow rate emitted through the overlying strata are likely to be very limited. Therefore, there are a number of potential sources of gas, but the level of hazard which could give rise to risk via plausible pathways is uncertain. It should be noted that the risk from ground gas can manifest only in the event that the development includes unprotected confined spaces containing /connected to viable ground gas pathways where gas can accumulate and where occupiers of the development can be exposed to accumulated gas.

8.2.5 As a result, on the basis of caution, and on the basis of an assumption that the development may include spaces where gas may accumulate, gas monitoring will be undertaken at the site as part of the confirmatory GI. This should involve monitoring from plausible sources of gas in viable pathway settings.

9. Updated conceptual site model

9.1 General

- 9.1.1 This section is aimed at identifying possible risks, if any, arising from substances used or deposited on-site, or from other sources of land contamination. Both past and current potentially contaminative land uses have been considered.
- 9.1.2 Current legislation relating to contaminated land in the UK is contained within Part 2A of the Environmental Protection Act 1990 (as amended).
- 9.1.3 The "suitable for use" approach is adopted for the assessment of contaminated land. Remedial measures are only undertaken where unacceptable risks to human health or the environment are realised, taking into account the use (or proposed use) of the land in question and the environmental setting.
- 9.1.4 Current best practice recommends that the determination of health hazards due to contaminated land is based on the principle of risk assessment, as outlined in Part 2A of the Environmental Protection Act 1990 (as amended).
- 9.1.5 The risk assessment process for the environmental contaminants is based on a source-pathway-receptor analysis. These terms can be defined as follows:
 - Source: Hazardous substance that has the potential to cause adverse impacts;
 - Pathway: Route whereby a hazardous substance may come into contact with the receptor. Examples include ingestion of contaminated soil and leaching of contaminants from soil into watercourses; and
 - Receptor: Target that may be affected by contamination. Examples include human occupants/users of site, water resources (surface waters or groundwater), or structures.
- 9.1.6 For a risk to be present, there must be a viable contaminant linkage; i.e., a mechanism whereby a source impacts on a sensitive receptor via a pathway.
- 9.1.7 The following sections detail the conceptual site model, which has been developed for the site with the view to assessing the potential risks during construction and upon completion of the proposed new development. The potential sources of contamination, potential receptors and potential pollutant pathways are identified and presented in Table 9.1 to Table 9.4.

9.2 Potential sources of contamination

9.2.1 Table 9.1 lists the considered sources of potential contamination at the site of the proposed development.

Table 9.1 Description of potential sources of contamination

Made Ground Made Ground was encountered to a depth of 3.2 m bgl during the Gl. Asbestos in the form of chrysotile was encountered in one exploratory hole location during the 2022 Gl (TP4). GAC exceedances of PAH and VOC determinands was also recorded within Made Ground samples. The reworked natural deposits encountered during the Gl comprised of clay between 0.3 m bgl and 3 m bgl; silt between 0.6 m bgl and 1.1 m bgl and peat

Sources	Description		
	between 1.9 m bgl and 3.3 m bgl. There were no exceedances of GAC criteria within soil samples from reworked superficial deposits		
Natural Strata	The natural strata may contain potential contaminants that may have migrated from the Made Ground.		
Soil Leachate	Exceedances above acceptance criteria for both DWS and EQS have been identified within Made Ground and superficial deposits for metals, inorganics, Ammoniacal Nitrogen, Thiocyanate and Total Cyanide.		
Groundwater	Shallow discontinuous perched groundwater is present within the Made Ground and potential elevated concentrations of contaminants may be present due to the historical industrial use of the site.		
Ground Gas Methane may be produced by historical landfill sites local site and carbon dioxide has the potential to be generated underlying peat and Made Ground deposits, Flamboroug Formation and Burnham Chalk Formation. A ground gas assessment was undertaken using the methods outlined The site is currently characterised conservatively as Characteristic Situation CS3 which is defined as a 'mode'			
Off-Site Sources	The adjacent railway lines and historical and contemporary industries in the surrounding area (oil storage depots, chemical works, unspecified depot / works and electricity sub stations) could be potential sources of contamination.		

Potential pathways 9.3

9.3.1 Table 9.2 provides a summary of the potential pathways by which the identified sources may come into contact with the receptors.

Table 9.2 Potential pathways

Potential Pathways		Description
Soil Source Pathways Including the following sources:	Dermal Contact	Dermal contact with contaminated soils, soil derived dust and soil leachate.
Made GroundSoil derived leachate	Direct Contact	Direct contact of building materials with contaminated soils and soil derived leachate.
	Ingestion	Direct or indirect ingestion of soil and soil derived dust.
	Inhalation	Inhalation of soil derived dust, organic vapours or ground generated gas.
	Plant Uptake	Uptake of contaminants via the roots.
Groundwater Source Pathways	Rainfall Infiltration & Vertical / Lateral migration via	Rainfall infiltration can generate and mobilise soil derived leachate which could

Potential Pathways		Description
Including the following sources: Soil leachate Perched groundwater Deep groundwater	permeable strata and service conduits	impact on surface water following lateral migration and groundwater. Perched groundwater (if present) may also migrate vertically to groundwater in other, deeper aquifers.
	Lateral Migration through Aquifer	As well as being a receptor, aquifers allow lateral migration of contaminants through the permeable strata.
Surface Water Pathways Includes the following sources: • Made Ground	Surface Run-off	Entrainment of sediment in surface run off into drainage ditches on site which discharge to the Humber Estuary.
- Made Ground	Surface Water Drainage	Surface spills could migrate via surface run off to drainage which is discharged into the Humber estuary.
Gas Pathways Including the following sources: • Ground gas	Vertical / Lateral Migration via permeable strata	Permeable strata, service trenches, historical landfills and areas of Made Ground may allow transportation of ground gases.

Potential receptors 9.4

9.4.1 A number of potential receptors have been identified as associated with the proposed development. Table 9.3 lists the potential receptors at the site.
 Table 9.3 Potential receptors

Potential Receptors	Description
Future Site Visitors	Users of the site may be affected by the presence of elevated concentrations of certain determinands. However, the transient nature of some visitors will limit the exposure time.
Onsite workers	Workers at the site may be affected by the presence of elevated concentrations of certain determinands. These workers will have a longer-term exposure to potential contaminants at the site which may lead to chronic health conditions.
	The highest risk areas will be within areas of new buildings where gas may accumulate. As the majority of the site will consist of parking and storage areas, there is only a very low risk to on site workers from outdoor inhalation.
Off-site Human Health Receptors	This includes residents, commercial and industrial buildings and occupiers of surrounding properties.

Potential Receptors	Description
	The nearest residential properties identified are located approximately 200 m south of the site and therefore are not considered to be potential receptors. The nearest commercial/ industrial buildings are located immediately adjacent to the west of the site within the wider Immingham Dock area.
Controlled Waters	 This includes on-site and off-site water courses: Surface Water Humber Estuary Drains in the southern half of Sub Plot 4 identified in the site reconnaissance which flow into an interceptor; and Offsite unnamed surface water courses (drains) identified to the east which may be connected to other drains which discharge to the Humber Estuary. Groundwater Superficial Secondary undifferentiated aquifers (Beach and Tidal Flat Deposits); The Tidal Flat Deposits and Glacial Till are classified as unproductive strata and therefore not considered to be Controlled Waters receptor; and Principal bedrock aquifers (Flamborough Chalk Formation and Burnham Chalk Formation) underlying the site, including a Source Protection Zone associated with a potable water abstraction approximately 65 m southeast of the site.
Development Infrastructure	Concrete is a receptor of chemical aggressivity in contaminated soils with a low pH and high sulphate concentrations. Plastic piped services and concrete foundations can be adversely affected by the presence of hydrocarbons, including phenolic compounds, where the integrity of the pipes can be compromised. This can lead to penetration of the pipes by mobile contaminants.
Flora and Fauna	On-site and off-site flora and fauna may be affected by the presence of elevated concentrations of certain determinands.
Construction Workers	Exposures experienced by construction workers are much less than for future site users due to the limited period of exposure. However, construction workers are more likely to encounter potential contaminants during the construction works.

Potential contamination linkages 9.5

The potential contaminant linkages and associated risks identified for the site are 9.5.1 summarised in Table 9.4.

Table 9.4 Potential contamination linkages

Source	Pathway	Receptor	
Elevated concentrations of PAHs in Made Ground	 Ingestion of contaminated soil 	Future Site UsersConstruction Workers	

Source	Pathway	Receptor
	 Inhalation/ingestion of soil derived dust Inhalation of organic vapours Direct contact with soils/dusts 	 Offsite Human Health <u>Surface water</u> Humber Estuary Drains on site Unnamed surface water courses Groundwater Secondary Undifferentiated Aquifer (Beach and Tidal Flat Deposits) / Principal
Elevated concentrations of determinands in leachate	Rainfall Infiltration and Vertical / Lateral migration via permeable strata	 Aquifer (Burnham Chalk Future Site Users Offsite Human Health Construction Workers Development Infrastructure Onsite workers Flora and Fauna Surface water Humber Estuary Drains on site Unnamed surface water courses Groundwater Secondary Undifferentiated Aquifer (Beach and Tidal Flat Deposits) / Principal Aquifer (Burnham Chalk Formation and Flamborough Chalk Formation)
Groundwater	Vertical and lateral migration via permeable strata	 Future Site Users Offsite Human Health Construction Workers Development Infrastructure Onsite workers Flora and Fauna Surface water

Source	Pathway	Receptor	
		 Humber Estuary Drains on site Unnamed surface water courses Groundwater Secondary Undifferentiated Aquifer (Beach and Tidal Flat Deposits) / Principal Aquifer (Burnham Chalk Formation and Flamborough Chalk Formation) 	
Elevated TOC and potential for elevated ground gases	Vertical and lateral migration of gas through permeable strata	 Future Site Users Construction Workers Development Infrastructure Onsite workers Offsite Human Health 	

10. Environmental risk assessment

10.1 Risk assessment principles and framework

- 10.1.1 Current best practice recommends that the determination of hazards due to contaminated land is based on the principle of risk assessment, as outlined in the Environment Agency guidance on Land Contamination Risk Management (LCRM) (2021).
- 10.1.2 For a risk to be present, there must be a viable contaminant linkage; i.e., a mechanism whereby a source impacts on a sensitive receptor via a pathway. The potential contaminant linkages that have been identified for this site are presented in Section 8.
- 10.1.3 Assessments of risks associated with each of these contaminant linkages, following review of available information for the site is discussed in the following sections.
- 10.1.4 Using criteria broadly based on those presented in the Construction Industry Research and Information Association publication Research & Development (R&D) Publication 66, National House Building Council (NHBC)/Environment Agency/Chartered Institute of Environmental Health (CIEH) 2008, the magnitude of the risk associated with potential contamination at the site has been assessed. To do this an estimate is made of:
 - The potential severity of the risk; and
 - The likelihood of the risk occurring.
- 10.1.5 The severity of the risk is classified according to the criteria in Table 10.1.

Table 10.1 Severity of risk

Severity Description			
High	 Acute risks to human health likely to result in "significant harm" (e.g., very high concentrations of contaminants/ground gases); Catastrophic damage to buildings/property (e.g., by explosion, sites with high gassing potential, extensive VOC contamination); Major pollution of controlled waters (e.g., surface watercourses or Principal Aquifers / Source Protection Zones); and Short term risk to a particular ecosystem. 		
Medium	 Chronic (long-term) risk to human health likely to result in "significant harm" (e.g., elevated concentration of contaminants/ground gases); Pollution of sensitive controlled waters (e.g., surface 		
	 watercourses or principal/secondary A aquifers); and Significant effects on sensitive ecosystems or species. 		
Mild	 Pollution of non-sensitive waters (e.g., smaller surface watercourses or secondary B aquifers or unproductive strata); and 		
	 Significant damage to crops, buildings, structures or services (e.g., by explosion, sites with medium gassing potential, elevated concentrations of contaminants). 		

Severity	y Description		
Minor	 Non-permanent human health effects (requirement for protective equipment during site works to mitigate health effects); 		
	 Damage to non-sensitive ecosystems or species; and 		
	 Minor (easily repairable) damage to buildings, structures or services (e.g., by explosion, sites with low gassing potential). 		
40 4 0	The much shilling of the mist, accommiss is alreading a consider to the culture six as in		

10.1.6 The probability of the risk occurring is classified according to the criteria given in Table 10.2.

Table 10.2 Probability of risk occurring

Probability	Explanation
High Likelihood Contaminant linkage may be present that appears very likely in term and risk is almost certain to occur in the long term, or there evidence of harm to the receptor.	
Likely	Contaminant linkage may be present, and it is probable that the risk will occur over the long term.
Low Likelihood	Contaminant linkage may be present and there is a possibility of the risk occurring, although there is no certainty that it will do so.
Unlikely Contaminant linkage may be present but the circumstances under harm would occur even in the long term are improbable.	

10.1.7 An overall evaluation of the level of risk is gained from a comparison of the severity and probability, as shown in Table 10.3.

Table 10.3 Level of risk

	Severity			
	Severe	Medium	Mild	Minor
High Likelihood	Very High	High	Moderate	Moderate / Low
Likely	High	Moderate	Moderate / Low	Low
Low Likelihood	Moderate	Moderate / Low	Low	Very Low
Unlikely	Moderate / Low	Low	Very Low	Very low

ť

10.2 Evaluation of risk

- 10.2.1 In October 2020 (updated April 2021), the UK government issued new guidance on the evaluation and management of contaminated land; LCRM. Current contaminated land guidance LCRM (Environment Agency, 2021) categorises risk at Stage 1 Tier 1 as follows:
 - Minimal or negligible;
 - · Tolerable or acceptable; and
 - Unacceptable.

10.2.2 However, no framework for assessing the risk has been published to accompany the guidance, so the CIEH & NHBC R&D Publication 66 assessment framework constitutes best practice in this regard. To align the risk rankings in Section 89.1 with the LCRM rankings and with the Part 2A definitions, the following matrix has been utilised. This conversion is presented in Table 10.4.

Table 10.4 Conversion of LCRM risk categories

R&D66 Level of Risk	Minimal/Negligible	Tolerable	Unacceptable
Very Low			
Low			
Moderate/Low			
Moderate*			
High			
Very High			

^{*}This risk category spans both tolerable and unacceptable. This is intentional as it is this risk band that tends to have the greatest level of uncertainty associated with it. Acceptability will be dependent on site-specific circumstances and level of confidence in the available evidence.

For a risk to be unacceptable, the contaminant linkage should be associated with at least a "medium" severity as defined in Table A4.3 in Annex 4 of R&D66 and the probability should (in the majority of cases) be at least "likely" as defined in Table A4.4 of R&D66.

10.2.3 These risk categories represent the level of risk as it is currently understood from the information available at this time.

Immingham Eastern Ro-Ro Terminal Project number: 60664611

Table 10.5 Evaluation of risk

				Potential	Risk Evaluation			- Potential
Source	Pathway	Receptor		Contaminan t Linkage	Severity	Probability	Risk	Risk LC:RM
Contaminants of potential concern within soil in Made Ground	Direct Contact / Ingestion / Inhalation of vapours & dust		Future Site Visitors (users of the Ro-Ro facility)	Y	Mild	Low Likelihood	Low	Minimal / Negligible
		On-Site Human Health	On-site Workers (Within future constructed buildings)	Y	Mild	Low Likelihood	Low	Minimal / Negligible
and natural strata			On-site workers (Outdoors)	Υ	Mild	Low Likelihood	Low	Minimal / Negligible
			Construction / Maintenance Workers	Y	Mild	Likely	Moderate / Low	Tolerable
	Inhalation of Vapours / Dusts	Off-Site Human Health	Workers in the commercial/ industrial buildings located adjacent to the west site boundary	Y	Minor	Low Likelihood	Very Low	Minimal / Negligible
	Surface run-off / Migration via site drainage		Surface Water: (Humber Estuary/ Drains on site)	Y	Mild	Likely	Moderate / Low	Tolerable
	Infiltration / Vertical Migration	Controlled Waters	Groundwater: (Superficial Secondary Undifferentiated (Beach and Tidal Flat Deposits and Glacial Till))	Y	Mild	Likely	Moderate / Low	Tolerable
			Groundwater: (Principal bedrock aquifers (Flamborough Chalk Formation and Burnham Chalk Formation)	Y	Medium	Unlikely	Low	Minimal / Negligible
	Direct Contact	Developmen t Infrastructur e	Buildings to be constructed on site and associated foundations and infrastructure	Y	Mild	Likely	Moderate / Low	Tolerable

	Direct Contact / Uptake	Flora & Fauna	On site flora and fauna	Υ	Minor	Likely	Low	Minimal / Negligible
Leachate and Groundwater contaminants from Made	Direct Contact /		Future Site Visitors	Υ	Mild	Low Likelihood	Low	Minimal / Negligible
		On-Site Human	On-site Workers (Within future constructed buildings)	Y	Mild	Low Likelihood	Moderate / Low	Tolerable
Ground and Natural Strata	Ingestion / Inhalation of vapours	Health	On-site workers (Outdoors)	Υ	Minor	Low Likelihood	Very Low	Minimal / Negligible
			Construction / Maintenance Workers	Υ	Mild	Likely	Moderate / Low	Tolerable
	Lateral Migration		Surface Water: (Humber Estuary) —	Υ	Mild	Likely	Moderate / Low	Tolerable
	Preferential migration Through Surface Water Drainage	- Controlled Waters	Surface Water: (Humber Estuary/ — Drains on site)	Y	Mild	Likely	Moderate / Low	Tolerable
	Vertical Migration		Groundwater: (Superficial Secondary Undifferentiated (Beach and Tidal Flat Deposits and Glacial Till))	Υ	Mild	Likely	Moderate / Low	Tolerable
			Groundwater: (Principal bedrock aquifers (Flamborough Chalk Formation and Burnham Chalk Formation)	Υ	Medium	Low Likelihood	Moderate / Low	Tolerable
	Direct Contact	Developmen t Infrastructur e	Buildings to be constructed on site and associated foundations and infrastructure	Υ	Mild	Likely	Moderate / Low	Tolerable
	Infiltration / Off-site Migration	Off-Site Human Health	Workers in the commercial/ industrial buildings located adjacent to the west site boundary	Υ	Mild	Unlikely	Very Low	Minimal / Negligible

	Direct Contact / Uptake	Flora & Fauna	Any on site flora and fauna	Υ	Minor	High Likelihood	Low	Minimal / Negligible
Ground Gas potentially produced by Made Ground, historical landfills, and naturally from organic content within the underlying deposits	Inhalation	On-Site – Human Health	Future Site Visitors (users of the Ro-Ro facility)	Υ	Medium	Likely	Moderate	Tolerable
			On-site workers (Outdoors)	Υ	Minor	Low Likelihood	Very Low	Minimal / Negligible
	Inhalation / Migration & Explosion		On-site Workers (Within future constructed buildings)	Υ	Medium	Likely	Moderate	Tolerable
			Construction / Maintenance Workers	Υ	Medium	Likely	Moderate	Tolerable
	Migration & Explosion	Developmen t Infrastructur e	Buildings to be constructed on site and associated foundations and infrastructure	Υ	Medium	Likely	Moderate	Tolerable
	Inhalation / Migration & Explosion	Off-Site Human Health	Off-site Receptors: Workers in the commercial/ industrial buildings located adjacent to the west site boundary	Υ	Minor	Low Likelihood	Very Low	Minimal / Negligible

10.3 Discussion of risk to receptors

10.3.1 Risk to future site visitors

- 10.3.1 The risk to future site visitors is considered to be *Low* to *Moderate* for the potential contaminant linkages identified in Table 10.5. This is considered to be *Minimal / Negligible* to *Tolerable* using the LC:RM risk rating.
- 10.3.2 Although exceedances of GAC criteria were recorded in Made Ground soil samples and within leachate samples from both Made Ground and superficial deposits, the exceedances are mostly the same order of magnitude and one order of magnitude above the GAC criteria, apart from ammoniacal nitrogen, thiocyanate and chromium VI which are two orders of magnitude above the DWS and EQS Freshwater criteria. However, the majority of the site will be overlain by hardstanding. Therefore, this will break the direct contact linkage between the potential contaminants in Made Ground, natural strata, groundwater and soil leachate with future site visitors. The majority of future site visitors are considered to be transient users for the embarkation and disembarkation of commercial and automotive traffic and passenger use. Therefore, future site visitors will spend limited amount of time on site and hence experience limited periods of exposure.
- 10.3.3 The ground gas risk assessment using RB17 indicates that on the basis of caution the site may be categorised as Characteristic Situation 3 using the maximum recorded TOC of 4.34% recorded in TP4 of the GI and an assessment of the wider setting of the site. Characteristic Situation CS3 is defined as a 'moderate' risk in CIRIA Report C665 (2007) "Assessing Risks Posed by Hazardous Ground Gases to Buildings", therefore the risk to future site users is considered to be Moderate. However, future site visitors are anticipated to be transient in nature and are unlikely to enter confined spaces where ground gas may plausibly accumulate.
- 10.3.4 Ground gas monitoring is recommended to be undertaken during further GI. It is anticipated that buildings will be constructed with suitable mitigation measures for the cautious Characteristic Situation CS3, unless ground gas monitoring and a further Ground Gas Risk Assessment is undertaken which allows revision of the Characteristic Situation classification for the site to a lower classification.

10.3.2 Risk to on-site workers (within future buildings)

- 10.3.5 The risk to on-site workers within future buildings is considered to be *Low* to *Moderate* for the contaminant linkages presented in Table 10.5.
- 10.3.6 Workers on site are anticipated to spend longer durations on site and hence have a greater exposure period. As stated in the Phase 1 Desk Study, terminal buildings are proposed in the northwest of Sub Plot 3, which borders a former chemical works and oil storage, presenting a potential source of contamination. Exceedances of GAC criteria were recorded in Made Ground soil samples. However, the exceedances were the same or one order of magnitude above the GAC criteria. Therefore, the risk is considered to be *Low* for the contaminant linkages associated with Made Ground, natural strata, leachate and groundwater.
- 10.3.7 The risk to on site workers within future buildings from ground gas is considered to be *Moderate* on the basis of caution. The site has been characterised as CS3 using RB17 due to the high TOC values recorded, particularly in six samples derived from Sub Plot 1 and 3. Buildings are currently located in this location, and further buildings are proposed to be constructed within these Sub Plots. However, it is anticipated that buildings will be designed to mitigate the risk of ground gas accumulation.

10.3.3 Risk to on-site workers (outdoors)

- 10.3.8 The risk to outdoor on-site workers is considered to be *Very Low* to *Low* for the contaminant linkages identified in Table 10.5.
- 10.3.9 As the site will be covered in further hardstanding, this will act as a barrier in the contaminant pathway and hence reduce the likelihood of workers coming into contact with potential contamination. Furthermore, the workers will be in open spaces which reduces the likelihood of gas inhalation and gas migration. Therefore, the risk is considered to be *Minimal / Negligible* using the LC:RM risk ratings.

10.3.4 Risk to offsite human health receptors

- 10.3.10 The risk to offsite human health receptors is considered to be *Very Low* for the contaminant linkages identified in Table 10.5.
- 10.3.11 The GAC exceedances for Made Ground soil samples were mostly limited to two exploratory hole locations, and no exceedances were recorded in superficial deposits. Although exceedances were recorded within leachate samples from Made Ground and superficial deposits, these were mostly the same or one order of magnitude above the DWS and EQS Freshwater criteria. However, it should be noted that the exceedances of ammoniacal nitrogen, thiocyanate and chromium VI were two orders of magnitude above the criteria. The presence of Devensian Till beneath the site, with low permeability layers such as clay, will act as a barrier to vertical migration towards the groundwater within the Principal Aquifer. Offsite migration of contamination in the form of wind-blown dust or vapours may affect offsite human health receptors. However, few exceedances were recorded in soil samples, and exposure via inhalation is considered negligible flowing the development works. During the construction phase, dust generation should be kept to a minimum in accordance with general best practice, as outlined in, for example, "Environmental Good Practice on Site", 3rd Edition, CIRIA Publication C692.
- 10.3.12 Although the site is characterised as CS3, the risk associated with ground gas is considered to be Very Low due to the majority of the proposed development being covered in hardstanding and the surrounding area is also covered in hardstanding. This will provide a barrier to potential gas migration. It is considered unlikely that the existing ground conditions will change and cause gas migration as a result of the IERRT project.
- 10.3.13 Therefore, the risk is considered to be *Minimal / Negligible* using the LC:RM risk rating.

10.3.5 Risk to controlled waters: surface water

- 10.3.14 There is a risk from potential contaminants in Made Ground, natural strata, groundwater and leachate at the site to surface waters.
- 10.3.15 Although exceedances of GAC criteria were recorded in soil samples in Made Ground, this was mostly limited to two locations within the western extent of Sub Plot 1 and the northeast corner of Sub Plot 3. The controlled waters screening indicated the majority of DWS and EQS Freshwater exceedances were within the same order of magnitude, or one order of magnitude above the DWS and EQS Freshwater criteria. The severity of the risk is therefore considered to be Mild. As there are areas of the site which comprise of soft ground, there is potential for infiltration of rainwater and generation of soil leachate. The hardstanding on the site could result in surface (overland) run-off towards the Humber Estuary. However, it should be noted that the exceedances of ammoniacal nitrogen,

thiocyanate and chromium VI were two orders of magnitude above the criteria, and therefore require further investigation. The probability is considered Likely, and the overall risk rating is *Moderate / Low*. This is *Tolerable* using the LC:RM risk rating.

10.3.6 Risk to controlled waters: groundwater

- 10.3.16 The risk from potential contaminants to groundwater is considered to be *Low* to *Moderate / Low*. This is considered to be *Tolerable* using the LC:RM risk rating.
- 10.3.17 Exceedances of ammoniacal nitrogen, nickel and copper were recorded within Made Ground leachate and superficial deposit leachate samples in the same exploratory hole locations. This indicates there is a potential source within Made Ground, and a pathway from Made Ground to superficial deposits. Furthermore, the GI undertaken in 2022 recorded shallow groundwater levels within exploratory hole locations, with slight ingress at 0.8 m bgl and ingress at 1.8 m bgl which caused the termination of the trial pit. Therefore, it is considered to be Likely for the contaminant linkage to be present in the superficial aquifer. However, as the majority of leachate exceedances are marginal, and the superficial aquifer within Beach and Tidal Flat Deposits is classified as Secondary Undifferentiated, the severity is considered to be Mild and hence the risk is *Moderate / Low*.
- 10.3.18 The risk to the Principal Aquifer within the Flamborough and Burnham Chalk Formations is *Low* to *Moderate / Low* for contaminants in Made Ground and natural strata. The potential severity is considered to be Medium due to the classification as a Principal Aquifer and the presence of SPZ 1, 2 and 3 on site.
- 10.3.19 However, no exceedances of GAC criteria were recorded in superficial deposits, therefore, the risk from contaminants in Made Ground and natural strata is considered to be Low. Although soil and leachate exceedances were recorded in Made Ground and leachate exceedances were recorded in superficial deposits, the thickness of Beach and Tidal Flat Deposits and low permeability layers within the Devensian Till (an Unproductive Aquifer) will act as a barrier to vertical migration of potential contaminants to the Principal Aquifer. If piling is required, this may create a preferential pathway for migration of impacted groundwater to the Principal Aquifer. the risks from piling would be considered within a piling risk assessment and appropriate mitigation measures implemented. The risk from leachate and groundwater is considered to be Moderate / Low as the combination of thick low permeability deposits and implementation of a piling risk assessment would result in a Low Likelihood.

10.3.7 Risk to development infrastructure

- 10.3.20 The risk to development infrastructure is considered to be *Moderate / Low* to *Moderate* for the contaminant linkages in Table 10.5.
- 10.3.21 A BRE Sulphate Assessment has not been undertaken as part of the GI. The GD Pickles GI classified the Design Sulphate Class of the site as DS-2 and the ACEC as AC-2. The presence of elevated concentrations of determinands within Made Ground and elevated concentrations of leachate may present a risk to development infrastructure. However, it is anticipated that risks would be mitigated against by specifying concrete mix and service pipes appropriate for ground conditions at the site.
- 10.3.22 The results of the ground gas risk assessment indicate the site is classified as Characteristic Situation 3 due to the elevated TOC in areas of Sub Plots 1 and 3, which is defined as a 'moderate' risk in CIRIA Report C665 (2007) "Assessing Risks Posed by Hazardous Ground Gases to Buildings" and the British Standards Publication "BS8485:2015+A1:2019 Code of Practice for the Design of Protective

Measures for Methane and Carbon Dioxide Ground Gases for New Buildings". Therefore, the risk to development infrastructure from ground gases is considered to be Moderate. Ground gas monitoring will be undertaken following the confirmatory GI that is being undertaken. The results of the ground gas monitoring should be used with the recommended guidance in BS8485:2015+A1:2019 to indicate which ground gas protection measures are sufficient to mitigate against the potential risk from ground gas. Therefore, the risk is considered to be *Tolerable* using the LC:RM risk rating.

10.3.8 Risk to construction workers

- 10.3.23 The risk to construction workers is considered to be *Moderate / Low* to *Moderate* for the contaminant linkages identified in Table 10.5.
- 10.3.24 A positive identification of chrysotile at 0.002%, was recorded in one sample out of twenty-eight tested, within a Made Ground sample during the 2022 GI. Therefore, suitable PPE and wetting down of soils may be required during the construction phase. The results of the human health risk assessment and controlled waters risk assessment identified exceedances of determinands in Made Ground soil and leachate samples, and in superficial leachate samples. However, the Made Ground exceedances were mostly limited to small areas within Sub Plot 1 and 3. The leachate exceedances were mostly the same or one order of magnitude above the DWS and EQS criteria, although greater exceedances were recorded in ammoniacal nitrogen, thiocyanate and chromium VI. Therefore, the severity is considered to be Mild, and the likelihood is considered to be Likely. A site-specific risk assessment and the use of personal protective equipment will be a prerequisite to construction workers being on site. Therefore, construction workers should be protected from any potential contaminants. It is also considered that if construction workers did come into contact with a potential contaminant(s) at the site, they would experience limited periods of exposure. This is considered to be Tolerable using the LC:RM risk rating.
- 10.3.25 The risk to construction workers from ground gas is considered to be *Moderate* due to the presence of Made Ground, organic content within the underlying deposits and the underlying Chalk deposits. Both the 2022 GI and the 2020 GD Pickles GI recorded elevated TOC, which in turn has resulted in the site being initially classified as Characteristic Situation 3 using the methodology in CL:AIRE Research Bulletin 17 (RB17). It is recommended that entry into excavations or any other enclosed space on a construction site should comply with confined space legislation and be assessed prior to entry. Therefore, the risk from ground gas is considered to be *Tolerable* using the LC:RM risk rating.
- 10.3.26 However, it is recommended that entry into excavations or any other enclosed space on a construction site should comply with confined space legislation and be assessed prior to entry.
- 10.3.27 Before construction works start, a health and safety risk assessment should be carried out in accordance with current health and safety regulations. This assessment should cover potential risks to both construction staff and the local population. Based on the findings of this risk assessment, appropriate mitigation measures should be implemented during the course of the construction works.

10.3.9 Risk to flora and fauna

10.3.28 The risks to flora and fauna on the site are classified as *Low*. Although exceedances were recorded in Made Ground, this was limited to potential hotspot locations within Sub Plot 1 and Sub Plot 3. The leachate exceedances were also mostly within the same or one order of magnitude above the criteria. Therefore,

Project number: 60664611

the marginal exceedances combined with the likely use of hardstanding on the site will result in a Low risk, particularly as the hardstanding provide a barrier to the onsite pathway to flora. This is considered to be *Minimal / Negligible* using the LC:RM risk ratings. As the Humber Estuary is designated as an ecologically sensitive site, the potential adverse effects should be mitigated through a site-specific Construction Environmental Management Plan.

11. Conclusions

11.1 Ground conditions

- 11.1.1 A ground investigation was undertaken in May 2022 to support the assessment of the Ground Conditions including Land Quality chapter of the ES (Chapter 12) for the landside development of the IERRT project.
- 11.1.2 The 2022 ground investigation identified a sequence of shallow strata comprising of topsoil to 0.1 m bgl and Made Ground to 3.2 m bgl. Reworked natural deposits comprised of clay between 0.3 m bgl and 3 m bgl and silt between 0.6 m bgl and 1.1 m bg. Peat was encountered between 1.9 m bgl and 3.2 m bgl.
- 11.1.3 The Made Ground was generally described as a gravel with fine to coarse sand, and occasionally as a clay. The gravel mostly comprised of black fissile mudstone, coal and chalk. Various anthropogenic sources were encountered such as clinker, coal, slag, brick, rebar, cables, pipes, plastic bags and sheeting and plastic-coated fibre glass sheets.
- 11.1.4 The reworked natural deposits mostly comprised of a soft to stiff slightly silty clay, although it was occasionally a sandy, gravelly clay. The gravel comprised of angular black mudstone and well-rounded white chalk. The clay was described as reworked natural clay in all exploratory hole locations. A discontinuous peat layer was encountered in the base of some trial pits which may denote the upper surface of the Tidal Flat Deposits, although this was not proven. The body of the Tidal Flat Deposits and the underlying Glacial Till were not proven as they lie below the depth limit of the trial pit method.
- 11.1.5 Groundwater was mostly encountered between 1.8 m bgl and 3.3 m bgl during the 2022 GI, although a slight ingress of groundwater was recorded at 0.8 m bgl in TP6.

11.2 Geoenvironmental conditions

- 11.2.1 The following conclusions have been reached following the geo-environmental assessment of the ground investigation:
 - The generic risk assessment of Made Ground soil samples from the 2022 GI and the 2020 GD Pickles GI indicated exceedances of PAH's. However, these exceedances were mostly limited to two exploratory hole locations only, indicating potential hot spot areas of contamination.
 - There were no exceedances of GAC criteria for samples from reworked natural deposits collected from the 2022 GI and the 2020 GD Pickles GI.
 - The generic risk assessment for controlled waters identified exceedances of several determinands compared to drinking water and freshwater standards. However, these exceedances are mostly the same order of magnitude, or one magnitude above the exceedance criteria. However, the exceedances of ammoniacal nitrogen, thiocyanate and chromium VI were two orders of magnitude above the DWS and EQS Freshwater criteria.
 - The ground gas risk assessment for the site undertaken using the methodology set out in RB17 indicates the site is categorised as Characteristic Situation CS3 on the basis of caution using the maximum TOC value recorded during the 2022 GI and 2020 GD Pickles GI. This is defined as a 'moderate' risk in CIRIA

Report C665 (2007) "Assessing Risks Posed by Hazardous Ground Gases to Buildings".

- Asbestos was encountered in the form of chrysotile at 0.002% in TP4 from the 2022 GI. However, the sample is located at a depth greater than 1 m below existing level.
- The overall geo-environmental risks are considered to be *Very Low* to *Moderate*, which is *Minimal / Negligible to Tolerable* using the LC:RM risk rating.

12. Recommendations

- 12.1.1 The findings of the ground investigation should be used to support the interpretation of data from the confirmatory ground investigation that is being undertaken for the purposes of detailed design.
- 12.1.2 The objectives of the proposed confirmatory GI comprise the following:
 - Confirmation of ground and groundwater conditions, which includes confirmation of rockhead depth and soil and rock strength parameters;
 - Provision of data to assess geotechnical design parameters including deformation parameters for settlement analysis, strength parameters for stability and bearing capacity calculations and permeability data for seepage analysis;
 - Further consideration of contamination levels within Made Ground and superficial deposits;
 - To conform with Eurocode 7 investigation requirements for structure design; and
 - Assist with the identification of geotechnical and / or geo-environmental constraints.
- 12.1.3 Following the confirmatory ground investigation, an interpretative report comprising human health, controlled waters and ground gas risk assessments, as necessary, will be prepared to confirm the risks associated with the presence of contamination encountered at the site, mitigation measures where required and make recommendations to support the detailed design of the proposal. This may include a Detailed Quantitative Risk Assessment (DQRA) for human health and controlled waters depending on the findings of the confirmatory GI. The report will also review the geotechnical conditions based on the ground investigation results and provide outline guidance on the need for ground improvement and advice on foundation options, typical allowable bearing pressures and potential settlement ranges.

13. References

AECOM. (2021). Immingham Eastern Ro-Ro Terminal. Phase 1 Geo-environmental and Geotechnical Desk Study. Associated British Ports. 60664611.

British Geological Survey. (1991). 1:50,000 Sheet 81 (and including parts of Sheets 82 and 90) Patrington Solid and Drift Map.

British Geological Survey. (2022). Geolndex Onshore. Available at: http://mapapps2.bgs.ac.uk/geoindex/home.html (Accessed: May 2022).

British Geological Survey. (2022c). The BGS Lexicon of Named Rock Units. Available at: //www.bgs.ac.uk/technologies/the-bgs-lexicon-of-named-rock-units/ (Accessed: May 2022)

British Transport Docks Board. (1965). Proposed Oil Jetties at Immingham, Lincolnshire. Report on Site Investigation.

CL:AIRE. (2012). RB17 A Pragmatic Approach to Ground Gas Risk Assessment.

CIRIA C665. (2007). Assessing Risks Posed by Hazardous Ground Gases to Buildings

Environment Agency. (2021). Land Contamination Risk Management (LCRM). Available at: https://www.gov.uk/government/publications/land-contamination-risk-management-lcrm#full-publication-update-history (Accessed: July 2022).

Environment Agency (2022) Catchment Data Explorer. Available at: https://environment.data.gov.uk/catchment-planning (Accessed: May 2022).

Exploration Associates. (1980). British Transport Docks Board Immingham Dock – Eastern Jetty Final Report on Site Investigation 22552.

GD Pickles Ltd. (2020). Geoenvironmental Investigation Report.

Groundsure Location Intelligence (2021) Groundsure® Report (GS-8247704).

Ground Explorations Ltd. (1967). Report No. 3722/SJB. Report on Exploration of Ground Conditions for Proposed Oil Terminal, Immingham.

Law (eds), Charlie and D'Aleo (eds), Sirio. (2016). CIRIA C762 Environmental Good Practice on Site Pocket Book (Fourth Edition). London: CIRIA

NHBC and Environment Agency. (2008). Guidance for the Safe Development of Housing on Land Affected by Contamination R&D Publication 66: 2008 Volume 1. National House Building Council. Available: https://www.nhbc.co.uk/binaries/content/assets/nhbc/products-and-services/tech-advice-and-guidance/guidance-for-the-safe-development-of-housing-on-land-affected-by-contamination.pdf (Accessed: July 2022)

UK Public General Acts. (1990). c.43 Environmental Protection Act 1990 Part 2A Contaminated Land

Drawings

Prepared For: Associated British Ports AECOM

Project number: 60664611

Annex A Chemical Laboratory Test Certificates

Prepared For: Associated British Ports

AECOM

Environmental Chemistry

Certificate of Analysis

Client: ABP

Project: 22052220

Quote: BEC220525409 V1.3

Project Ref: ABP

Site: Immingham Dock

Contact: Tom Jeynes

Address: Dock Office

Port of Immingham
North East Lincolnshire

DN40 2LZ

E-Mail: TJeynes@abports.co.uk

Phone: (0) 7802 910 637

No. Samples Received: 8

Date Received: 27/05/2022

Analysis Date: 22/06/2022

Date Issued: 28/06/2022

Report Type: Final Version 02

This report supercedes any versions previously issued by the laboratory

Account Manager
Martin Elliott-Palmer
01283 554137

Authorised by the Operations Manager Becky Batham

SOCOTEC UK, Ashby Road, Bretby, Burton-on-Trent, UK, DE15 0YZ

Client: ABP
Project Name: ABP
Project No: 22052220
Date Issued: 28/06/2022

Samples Analysed

Sample Reference	Text ID	Sample Date	Sample Type
TP6 at 0.15	22052220-001	24/05/2022 09:00:00	SOLID
TP6 at 1.30	22052220-002	24/05/2022 09:00:00	SOLID
TP6 at 1.60	22052220-003	24/05/2022 09:00:00	SOLID
TP6 at 3.00	22052220-004	24/05/2022 09:00:00	SOLID
TP5 at 0.80	22052220-005	24/05/2022 10:30:00	SOLID
TP5 at 1.30	22052220-006	24/05/2022 10:30:00	SOLID
TP5 at 2.30	22052220-007	24/05/2022 10:30:00	SOLID
TP5 at 3.30	22052220-008	24/05/2022 10:30:00	SOLID

Client: ABP

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

Analysis Results

Analysis Results											
	Sample IE		mple ID	001		002 TP6 at 1.30		003 TP6 at 1.60	004 TP6 at 3.00		
		Customer ID		TP6	at 0.15						
			Samp	le Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samplin	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Ammoniacal Nitrogen as N	KONENS	0.01	mg/l	U	<0.01		17.4			9.90	
Ammoniacal Nitrogen (Exchangeable) as N	AMMAR	0.5	mg/kg^	UM		0.90		29.3	102		88.1
>C6-C7 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100		<0.100			<0.100	
>C7-C8 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100		<0.100			<0.100	
>C7-C8 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.005	mg/l	N	<0.005		<0.005			<0.005	
>C8-C10 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100		<0.100			<0.100	
>C8-C10 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.02	mg/l	N	<0.020		<0.020			<0.020	
C5-C6 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100		<0.100			<0.100	
C5-C7 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.005	mg/l	N	<0.005		<0.005			<0.005	
Total GRO C5-C10 HS_1D_Total	GROHSA/BTEXHSA	0.1	mg/l	U	<0.100		<0.100			<0.100	
>C6-C7 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.211		<0.242			<0.255
>C7-C8 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.211		<0.242			<0.255
>C7-C8 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.01	mg/kg^	UM		<0.011		<0.012			<0.013
>C8-C10 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.211		<0.242			<0.255
>C8-C10 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.04	mg/kg^	UM		<0.043		<0.048			<0.052
C5-C6 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.211		<0.242			<0.255
C5-C7 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.01	mg/kg^	UM		<0.011		<0.012			<0.013
Total GRO C5-C10 HS_1D_Total	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.211		<0.242			<0.255
рН	PHCONDW	1	pH units	U	8.4		7.9			8.0	
1	1	1		1 1		1	1	1	1	I .	1

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			San	nple ID		005	006	007	0	08
			Custo	mer ID	TP5	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	at 3.30
			Sampl	е Туре	LPL	SOLID	SOLID	SOLID	LPL	SOLID
			Samplin	g Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units /	Accred.						
Ammoniacal Nitrogen as N	KONENS	0.01	mg/l	U	0.20				6.30	
Ammoniacal Nitrogen (Exchangeable) as	AMMAR	0.5	mg/kg^	UM		1.70*	1.80	1.30		102
C6-C7 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100				<0.100	
C7-C8 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100				<0.100	
>C7-C8 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.005	mg/l	N	<0.005				<0 005	
C8-C10 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100				<0.100	
C8-C10 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.02	mg/l	N	<0.020				<0 020	
C5-C6 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100				<0.100	
C5-C7 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.005	mg/l	N	<0.005				<0 005	
Total GRO C5-C10 HS_1D_Total	GROHSA/BTEXHSA	0.1	mg/l	U	<0.100				<0.100	
C6-C7 Aliphatic	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.227*				<0.268
C7-C8 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.227*				<0.268
C7-C8 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.01	mg/kg^	UM		<0.011*				<0.013
-C8-C10 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.227*				<0.268
-C8-C10 Aromatic ds_1D_AR	GROHSA/BTEXHSA	0.04	mg/kg^	UM		<0.045*				<0.054
C5-C6 Aliphatic IS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.227*				<0.268
C5-C7 Aromatic IS_1D_AR	GROHSA/BTEXHSA	0.01	mg/kg^	UM		<0.011*				<0.013
otal GRO C5-C10 S_1D_Total	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.227*				<0.268
pH	PHCONDW	1	pH units	U	10.4				8.1	

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			Sa	imple ID	(001	0	02	003	0	04
			Cust	omer ID	TP6	at 0.15	TP6 a	at 1.30	TP6 at 1.60	TP6	at 3.00
			Samp	ole Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampli	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.							
H (2.5:1 extraction)	PHSOIL	1	pH units	UM		8.9		7.7	8.5		7.9
chloride as Cl	KONENS	1	mg/l	U	62		58			107	
Chromium (VI) as Cr	KONENS	0.003	mg/l	U	0.029		<0.003			<0.003	
Chromium (VI) as Cr	KONENS	0.1	mg/kg^	N		<0.1		<0.1	<0.1		<0.1
ree Cyanide	SFAPI	0.02	mg/l	U	<0.02		<0.02			<0.02	
ree Cyanide	SFAPI	0.5	mg/kg^	UM		<0.5		<0.6	<0.6		<0.6
henol Index	SFAPI	0.5	mg/kg^	U		1.1		<0.6	<0.6		<0.6
hiocyanate	SFAPI	0.2	mg/l	U	<0.20		<0.20			<0.20	
hiocyanate	SFAPI	2	mg/kg^	UM		<2.1		<2.4	<2.4		<2.6
otal Cyanide	SFAPI	0.02	mg/l	U	<0.02		<0.02			<0.02	
otal Cyanide	SFAPI	0.5	mg/kg^	UM		<0.5		<0.6	<0.6		<0.6
raction of Organic Carbon	WSLM59	0.0002	Dry Weight Corrected^	U		0.0026		0.0193	0.0102		0.0197
ioil Organic Matter	WSLM59	0.04	% m/m^	U		0.45		3.33	1.76		3.40
eached Organic Carbon	WSLM13	0.2	mg/l	U	2.6		8.5			31	
rsenic as As	ICPMSS	0.3	mg/kg^	UM		0.5		11.9	9.4		13.1
admium as Cd	ICPMSS	0.2	mg/kg^	UM		0.7		0.3	0.3		0.4
opper as Cu	ICPMSS	1.6	mg/kg^	UM		2.9		18.0	20.9		24.2
ead as Pb	ICPMSS	0.7	mg/kg^	UM		2.2		15.2	13.0		25.6
fercury as Hg	ICPMSS	0.5	mg/kg^	UM		<0.5		<0.5	<0.5		<0.5

Project Name: Immingham Dock

Project No: 22052220
Date Issued: 28/06/2022

			Sam	ple ID	0	05	006	007	0	08
			Custor	ner ID	TP5 a	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	at 3.30
			Sample	туре	LPL	SOLID	SOLID	SOLID	LPL	SOLID
			Sampling	L	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units A	ccred.						
pH (2.5:1 extraction)	PHSOIL	1	pH units	UM		8.7*	8.1	8.4		8.3
Chloride as Cl	KONENS	1	mg/l	U	186				58	
Chromium (VI) as Cr	KONENS	0.003	mg/l	U	<0.003				<0 003	
Chromium (VI) as Cr	KONENS	0.1	mg/kg^	N		<0.1	<0.1	<0.1		<0.1
Free Cyanide	SFAPI	0.02	mg/l	U	<0.02				<0 02	
Free Cyanide	SFAPI	0.5	mg/kg^	UM		<0.6*	<0.6	<0.6		<0.7
Phenol Index	SFAPI	0.5	mg/kg^	U		<0.6*	<0.6	<0.6		<0.7
Thiocyanate	SFAPI	0.2	mg/l	U	0.82				<0 20	
Thiocyanate	SFAPI	2	mg/kg^	UM		<2.3*	<2.4	<2.4		<2.7
Fotal Cyanide	SFAPI	0.02	mg/l	U	<0.02				<0 02	
Total Cyanide	SFAPI	0.5	mg/kg^	UM		<0.6*	<0.6	<0.6		<0.7
Fraction of Organic Carbon	WSLM59	0.0002	Dry Weight Corrected^	U		0.0572*	0.0085	0.0059		0.0146
Soil Organic Matter	WSLM59	0.04	% m/m^	U		9.86*	1.47	1.01		2.52
eached Organic Carbon	WSLM13	0.2	mg/l	U	6.5				28	
Arsenic as As	ICPMSS	0.3	mg/kg^	UM		18.4*	9.4	8.9		17.2
Cadmium as Cd	ICPMSS	0.2	mg/kg^	UM		1.2*	0.3	0.3		<0.2
Copper as Cu	ICPMSS	1.6	mg/kg^	UM		18.4*	16.6	18.1		16.2
ead as Pb	ICPMSS	0.7	mg/kg^	UM		70.2*	15.5	11.4		22.7
Mercury as Hg	ICPMSS	0.5	mg/kg^	UM		<0.5*	<0.5	<0.5		<0.5

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

		Sar	mple ID	0	01	0	002	003	0	04
		Custo	mer ID	TP6	at 0.15	TP6	at 1.30	TP6 at 1.60	TP6 a	at 3.00
		Samp	le Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
		Samplin	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Method Code	MDL	Units	Accred.							
ICPMSS	2	mg/kg^	UM		2.1		26.1	28.0		32.2
ICPMSS	0.5	mg/kg^	UM		1.0		<0.5	<0.5		<0.5
ICPMSS	1.2	mg/kg^	UM		18.6		25.4	26.7		35.1
ICPMSS	16	mg/kg^	UM		<16.0		56.5	65.5		101.9
ICPSOIL	36	mg/kg^	UM		2500		25900	28800		32300
ICPBOR	0.5	mg/kg^	UM		6.2		3.1	2.2		4.1
ICPMSW (Dissolved)	0.001	mg/l	U	0.004		0.005			0.011	
ICPMSW (Dissolved)	0.00002	mg/l	U	0.00008		0.00005			0.00008	
ICPMSW (Dissolved)	0.001	mg/l	U	0.024		<0.001			0.002	
ICPMSW (Dissolved)	0.001	mg/l	U	0.004		0.002			<0.001	
ICPMSW (Dissolved)	0.001	mg/l	U	<0.001		<0.001			<0.001	
ICPMSW (Dissolved)	0.00003	mg/l	U	<0.00003		<0.00003			<0.00003	
ICPMSW (Dissolved)	0.001	mg/l	U	0.003		0.003			0.005	
ICPMSW (Dissolved)	0.001	mg/l	U	0.006		0.004			0.003	
ICPMSW (Dissolved)	0.002	mg/l	U	0.012		0.003			0.004	
ICPWATVAR (Dissolved)	0.01	mg/l	U	0.96		0.42			0.52	
ICPWATVAR (Dissolved)	1	mg/l	U	685		221			58	
ICPWATVAR (Dissolved)	0.01	mg/l	U	0.01		0.01			0.31	
BTEXHSA	5	μg/l	N	<5		<5			<5	
	ICPMSS ICPMSS ICPMSS ICPMSS ICPMSS ICPSOIL ICPBOR ICPMSW (Dissolved) ICPWATVAR (Dissolved) ICPWATVAR (Dissolved)	ICPMSS 2	Method Code MDL Units	ICPMSS	Customer ID Sample Type Sampling Date 24/05/2022	Customer ID Sampler Type Sampling Date Sampling Date	Nethod Code	Continued Cont	Customer ID TP6 at 1.15 TP6 at 1.30 TP6 at 1.50 TP6 at 1.50	Company Comp

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			San	nple ID		05	006	007	0(
			Custo	mer ID	TP5	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	t 3.30
			Sampl	е Туре	LPL	SOLID	SOLID	SOLID	LPL	SOLID
			Samplin	g Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.						
Nickel as Ni	ICPMSS	2	mg/kg^	UM		9.7*	27.7	25.3		35.7
Selenium as Se	ICPMSS	0.5	mg/kg^	UM		4.5*	<0.5	<0.5		<0.5
Total Chromium as Cr	ICPMSS	1.2	mg/kg^	UM		12.7*	25.9	23.9		38.7
Zinc as Zn	ICPMSS	16	mg/kg^	UM		238.2*	64.8	56.8		96.6
Iron as Fe	ICPSOIL	36	mg/kg^	UM		14900*	25200	24200		55000
Boron as B	ICPBOR	0.5	mg/kg^	UM		2.5*	2.4	1.4		5.3
Arsenic as As	ICPMSW (Dissolved)	0.001	mg/l	U	0.052				0.009	
Cadmium as Cd	ICPMSW (Dissolved)	0.00002	mg/l	U	0.00002				0.00008	
Total Chromium as Cr	ICPMSW (Dissolved)	0.001	mg/l	U	0.001				0.002	
Copper as Cu	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001				<0 001	
Lead as Pb	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001				0.002	
Mercury as Hg	ICPMSW (Dissolved)	0.00003	mg/l	U	<0.00003				<0 00003	
Nickel as Ni	ICPMSW (Dissolved)	0.001	mg/l	U	0.001				0.004	
Selenium as Se	ICPMSW (Dissolved)	0.001	mg/l	U	0.007				0.003	
Zinc as Zn	ICPMSW (Dissolved)	0.002	mg/l	U	0.006				0.013	
Boron as B	ICPWATVAR (Dissolved)	0.01	mg/l	U	0.38				0.55	
Calcium as Ca	ICPWATVAR (Dissolved)	1	mg/l	U	123				39	
ron as Fe	ICPWATVAR (Dissolved)	0.01	mg/l	U	0.02				4.14	
Benzene HS_1D_AR	BTEXHSA	5	μg/l	N	<5				<5	

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

Analysis Results											
			Sar	mple ID	(001	C	002	003	0	04
			Custo	omer ID	TP6	at 0.15	TP6	at 1.30	TP6 at 1.60	TP6 a	at 3.00
			Samp	le Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samplir	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Ethylbenzene HS_1D_AR	BTEXHSA	5	μg/l	N	<5		<5			<5	
m/p-Xylene HS_1D_AR	BTEXHSA	10	μg/l	N	<10		<10			<10	
o-Xylene HS_1D_AR	BTEXHSA	5	μg/l	N	<5		<5			<5	
Toluene HS_1D_AR	BTEXHSA	5	μg/l	N	<5		<5			<5	
Benzene HS_1D_AR	BTEXHSA	10	µg/kg^	UM		<11		<12			<13
Ethylbenzene HS_1D_AR	BTEXHSA	10	μg/kg^	UM		<11		<12			<13
m/p-Xylene HS_1D_AR	BTEXHSA	20	μg/kg^	UM		<21		<24			<26
o-Xylene HS_1D_AR	BTEXHSA	10	μg/kg^	UM		<11		<12			<13
Toluene HS_1D_AR	BTEXHSA	10	μg/kg^	UM		<11		<12			<13
>C6-C10 HS_1D_Total	GROHSA	0.1	mg/l	N	<0.100		<0.100			<0.100	
Acenaphthene	PAHMSUS	0.08	mg/kg^	UM		47.0		0.14	<0.10		<0.10
Acenaphthylene	PAHMSUS	0.08	mg/kg^	U		1.25		<0.10	<0.10		<0.10
Anthracene	PAHMSUS	0.08	mg/kg^	U		58.8		0.22	<0.10		<0.10
Benzo[a]anthracene	PAHMSUS	0.08	mg/kg^	UM		59.6		0.23	<0.10		0.12
Benzo[a]pyrene	PAHMSUS	0.08	mg/kg^	UM		53.5		0.18	<0.10		0.14
Benzo[b]fluoranthene	PAHMSUS	0.08	mg/kg^	UM		55.9		0.23	<0.10		0.20
Benzo[g,h,i]perylene	PAHMSUS	0.08	mg/kg^	UM		21.9		0.10	<0.10		0.10
Benzo[k]fluoranthene	PAHMSUS	0.08	mg/kg^	UM		21.2		0.10	<0.10		<0.10
Chrysene	PAHMSUS	0.08	mg/kg^	UM		45.0		0.23	<0.10		0.15
									1		1

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			s	ample ID	(005	006	007	0	08
			Cus	tomer ID	TP5	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	at 3.30
			Sam	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID
			Samp	ling Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.						
Ethylbenzene HS_1D_AR	BTEXHSA	5	μg/l	N	<5				<5	
m/p-Xylene HS_1D_AR	BTEXHSA	10	μg/l	N	<10				<10	
o-Xylene HS_1D_AR	BTEXHSA	5	μg/l	N	<5				<5	
Toluene HS_1D_AR	BTEXHSA	5	μg/l	N	<5				<5	
Benzene HS_1D_AR	BTEXHSA	10	μg/kg^	UM		<11*				<13
Ethylbenzene HS_1D_AR	BTEXHSA	10	μg/kg^	UM		<11*				<13
m/p-Xylene HS_1D_AR	BTEXHSA	20	μg/kg^	UM		<23*				<27
o-Xylene HS_1D_AR	BTEXHSA	10	μg/kg^	UM		<11*				<13
Toluene HS_1D_AR	BTEXHSA	10	μg/kg^	UM		<11*				<13
>C6-C10 HS_1D_Total	GROHSA	0.1	mg/l	N	<0.100				<0.100	
Acenaphthene	PAHMSUS	0.08	mg/kg^	UM		<0.09*	<0.10	<0.10		<0.11
Acenaphthylene	PAHMSUS	0.08	mg/kg^	U		<0.09*	<0.10	<0.10		<0.11
Anthracene	PAHMSUS	0.08	mg/kg^	U		<0.09*	<0.10	<0.10		<0.11
Benzo[a]anthracene	PAHMSUS	0.08	mg/kg^	UM		0.15*	<0.10	<0.10		<0.11
Benzo[a]pyrene	PAHMSUS	0.08	mg/kg^	UM		<0.09*	<0.10	<0.10		<0.11
Benzo[b]fluoranthene	PAHMSUS	0.08	mg/kg^	UM		0.17*	<0.10	<0.10		<0.11
Benzo[g,h,i]perylene	PAHMSUS	0.08	mg/kg^	UM		<0.09*	<0.10	<0.10		<0.11
Benzo[k]fluoranthene	PAHMSUS	0.08	mg/kg^	UM		<0.09*	<0.10	<0.10		<0.11
Chrysene	PAHMSUS	0.08	mg/kg^	UM		0.21*	<0.10	<0.10		<0.11

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			Sa	imple ID		01		02	003		004
			Cust	omer ID	TP6 a	at 0.15	TP6	at 1.30	TP6 at 1.60	TP6	at 3.00
			Samp	ole Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampli	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Dibenzo[a,h]anthracene	PAHMSUS	0.08	mg/kg^	UM		6.61		<0.10	<0.10		<0.10
Fluoranthene	PAHMSUS	0.08	mg/kg^	UM		160		0.71	<0.10		0.28
Fluorene	PAHMSUS	0.08	mg/kg^	UM		37.6		0.16	<0.10		<0.10
Indeno[1,2,3-cd]pyrene	PAHMSUS	0.08	mg/kg^	UM		28.6		0.10	<0.10		<0.10
Naphthalene	PAHMSUS	0.08	mg/kg^	UM		10.0		0.24	<0.10		<0.10
Phenanthrene	PAHMSUS	0.08	mg/kg^	UM		167		0.86	<0.10		0.23
Pyrene	PAHMSUS	0.08	mg/kg^	UM		121		0.57	<0.10		0.25
Total PAH 16	PAHMSUS	1.28	mg/kg^	U		896		4.27	<1 54		2.29
Dimethylphenols	PHEHPLCUV	0.05	mg/l	U	<0.05		<0.05			<0.05	
Methylphenols	PHEHPLCUV	0.05	mg/l	U	<0.05		<0.05			<0.05	
Phenol	PHEHPLCUV	0.05	mg/l	U	<0.05		<0.05			<0.05	
Total Phenois	PHEHPLCUV	0.2	mg/l	U	<0.20		<0.20			<0.20	
Trimethylphenols	PHEHPLCUV	0.05	mg/l	U	<0.05		<0.05			<0.05	
2,4,5-Trichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D		<0.080 D			<0.080 p	
2,4,6-Trichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D		<0.080 D			<0.080 p	
2,4-Dichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D		<0.080 D			<0.080 D	
2,4-Dimethylphenol	SVOCSW	0.02	mg/l	N	<0.080 D		<0.080 D			<0.080 p	
2,4-Dinitrophenol	SVOCSW	0.01	mg/l	N	<0.040 p		<0.040 p			<0.040 p	
2-Chlorophenol	svocsw	0.02	mg/l	N	<0.080 D		<0.080 D			<0.080 D	

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			Sam	iple ID		005	006	007		08
			Custo	mer ID	TP5	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	nt 3.30
			Sample	e Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID
			Samplin	g Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units A	Accred.						
Dibenzo[a,h]anthracene	PAHMSUS	0.08	mg/kg^	UM		<0.09*	<0.10	<0.10		<0.11
Fluoranthene	PAHMSUS	0.08	mg/kg^	UM		0.26*	0.23	<0.10		<0.11
luorene	PAHMSUS	0.08	mg/kg^	UM		<0.09*	<0.10	<0.10		<0.11
ndeno[1,2,3-cd]pyrene	PAHMSUS	0.08	mg/kg^	UM		<0.09*	<0.10	<0.10		<0.11
Naphthalene	PAHMSUS	0.08	mg/kg^	ИМ		2.88*	<0.10	<0.10		<0.11
Phenanthrene	PAHMSUS	0.08	mg/kg^	UM		1.36*	<0.10	<0.10		<0.11
Pyrene	PAHMSUS	0.08	mg/kg^	UM		0.24*	0.21	<0.10		<0.11
Total PAH 16	PAHMSUS	1.28	mg/kg^	U		6.09*	1.80	<1.53		<1.72
Dimethylphenols	PHEHPLCUV	0.05	mg/l	U	<0.05				<0.05	
Vethylphenols	PHEHPLCUV	0.05	mg/l	U	<0.05				<0.05	
Phenol	PHEHPLCUV	0.05	mg/l	U	<0.05				<0.05	
Total Phenols	PHEHPLCUV	0.2	mg/l	U	<0.20				<0 20	
Frimethylphenols	PHEHPLCUV	0.05	mg/l	U	<0.05				<0.05	
2,4,5-Trichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D	
2,4,6-Trichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D	
,4-Dichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 p	
,4-Dimethylphenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D	
,4-Dinitrophenol	svocsw	0.01	mg/l	N	<0.040 D				<0.040 p	
2-Chlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D	

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

Analysis Results				_						1	
			Sa	ample ID		001		02	003	-	04
			Cus	tomer ID	TP6	at 0.15	TP6	at 1.30	TP6 at 1.60	TP6 a	at 3.00
			Sam	ple Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampl	ing Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.							
2-Methylphenol	SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 D			<0.020 D	
2-Nitrophenol	SVOCSW	0.02	mg/l	N	<0.080 D		<0.080 D			<0.080 D	
3- & 4-Methylphenol	SVOCSW	0.02	mg/l	N	<0.080 D		<0.080 p			<0.080 D	
4,6-Dinitro-2-methylphenol	SVOCSW	0.05	mg/l	N	<0.200 D		<0.200 D			<0.200 D	
4-Chloro-3-methylphenol	SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 p			<0.020 p	
4-Chlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D		<0.080 D			<0.080 D	
4-Nitrophenol	SVOCSW	0.05	mg/l	N	<0.200 D		<0.200 D			<0.200 D	
Pentachlorophenol	SVOCSW	0.05	mg/l	N	<0.200 D		<0.200 D			<0.200 D	
Phenol	SVOCSW	0.02	mg/l	N	<0.080 D		<0.080 D			<0.080 D	
Total (15) Phenols	SVOCSW	0.35	mg/l	N	<1.40		<1.40			<1.40	
2,4,5-Trichlorophenol	PHEMS	0.02	mg/kg^	U		<1.05 D		<0.02			<0.03
2,4,6-Trichlorophenol	PHEMS	0.02	mg/kg^	U		<1.05 D		<0.02			<0.03
2,4-Dichlorophenol	PHEMS	0.03	mg/kg^	U		<1.58 D		<0.04			<0.04
2,4-Dimethylphenol	PHEMS	0.02	mg/kg^	U		<1.05 D		<0.02			<0.03
2,4-Dinitrophenol	PHEMS	0.04	mg/kg^	N		<2.11 D		<0.05			<0.05
2-Chlorophenol	PHEMS	0.03	mg/kg^	U		<1.58 D		<0.04			<0.04
2-Methylphenol	PHEMS	0.03	mg/kg^	U		<1.58 D		<0.04			<0.04
2-Nitrophenol	PHEMS	0.03	mg/kg^	U		<1.58 D		<0.04			<0.04
3- & 4-Methylphenol	PHEMS	0.02	mg/kg^	U		<1.05 D		0.06			<0.03

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			S	ample ID	(005	006	007	0	08
			Cus	tomer ID	TP5	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	nt 3.30
			Sam	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID
				ing Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.						
2-Methylphenol	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D	
2-Nitrophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D	
3- & 4-Methylphenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D	
4,6-Dinitro-2-methylphenol	SVOCSW	0.05	mg/l	N	<0.200 D				<0.200 p	
4-Chloro-3-methylphenol	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D	
4-Chlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D	
4-Nitrophenol	SVOCSW	0.05	mg/l	N	<0.200 D				<0.200 D	
Pentachlorophenol	SVOCSW	0.05	mg/l	N	<0.200 D				<0.200 D	
Phenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D	
Total (15) Phenols	SVOCSW	0.35	mg/l	N	<1.40				<1.40	
2,4,5-Trichlorophenol	PHEMS	0.02	mg/kg^	U		<0.02*				<0.03
2,4,6-Trichlorophenol	PHEMS	0.02	mg/kg^	U		<0.02*				<0.03
2,4-Dichlorophenol	PHEMS	0.03	mg/kg^	U		<0.03*				<0.04
2,4-Dimethylphenol	PHEMS	0.02	mg/kg^	U		<0.02*				<0.03
2,4-Dinitrophenol	PHEMS	0.04	mg/kg^	N		<0.05				<0.05
2-Chlorophenol	PHEMS	0.03	mg/kg^	U		<0.03*				<0.04
2-Methylphenol	PHEMS	0.03	mg/kg^	U		0.09*				<0.04
2-Nitrophenol	PHEMS	0.03	mg/kg^	U		<0.03*				<0.04
3- & 4-Methylphenol	PHEMS	0.02	mg/kg^	U		0.07*				<0.03

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			Sa	mple ID		01		002	003		04
			Custo	omer ID	TP6 a	at 0.15	TP6	at 1.30	TP6 at 1.60	TP6	at 3.00
			Samp	le Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampli	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.							
,6-Dinitro-2-methylphenol	PHEMS	0.03	mg/kg^	N		<1.58 D		<0.04			<0.04
-Chloro-3-methylphenol	PHEMS	0.03	mg/kg^	U		<1.58 p		<0.04			<0.04
-Chlorophenol	PHEMS	0.04	mg/kg^	U		<2.11 p		<0.05			<0.05
-Nitrophenol	PHEMS	0.06	mg/kg^	U		<3.16 □		<0.07			<0.08
Pentachlorophenol	PHEMS	0.03	mg/kg^	N		<1.58 D		<0.04			<0.04
Phenol	PHEMS	0.03	mg/kg^	U		<1.58 D		<0.04			<0.04
otal (15) Phenols	PHEMS	0.46	mg/kg^	N		<24.2		0.59			<0.59
,2,4-Trichlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 D			<0.020 p	
,2-Dichlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 p		<0.020 D			<0.020 p	
,3-Dichlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 D			<0.020 D	
,4-Dichlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 D			<0.020 p	
-Methylnaphthalene	SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
,4,5-Trichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D		<0.080 D			<0.080 D	
,4,6-Trichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D		<0.080 D			<0.080 p	
,4-Dichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D		<0.080 D			<0.080 D	
,4-Dimethylphenol	SVOCSW	0.02	mg/l	N	<0.080 D		<0.080 D			<0.080 D	
,4-Dinitrophenol	SVOCSW	0.01	mg/l	N	<0.040 p		<0.040 p			<0.040 p	
,4-Dinitrotoluene	SVOCSW	0.005	mg/l	N	<0.020 p		<0.020 p			<0.020 p	
,6-Dinitrotoluene	SVOCSW	0.005	mg/l	N	<0.020 p		<0.020 p			<0.020 p	

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			San	nple ID	0	05	006	007	0	08
			Custo	mer ID	TP5 a	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	at 3.30
			Sampl	e Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID
			Samplin	-	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.						
4,6-Dinitro-2-methylphenol	PHEMS	0.03	mg/kg^	N		<0.03				<0.04
4-Chloro-3-methylphenol	PHEMS	0.03	mg/kg^	U		<0.03*				<0.04
4-Chlorophenol	PHEMS	0.04	mg/kg^	U		<0.05*				<0.05
4-Nitrophenol	PHEMS	0.06	mg/kg^	U		<0.07*				<0.08
Pentachlorophenol	PHEMS	0.03	mg/kg^	N		<0.03				<0.04
Phenol	PHEMS	0.03	mg/kg^	U		<0.03*				<0.04
Total (15) Phenols	PHEMS	0.46	mg/kg^	N		0.62				<0.62
1,2,4-Trichlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p	
1,2-Dichlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 D	
1,3-Dichlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 D	
1,4-Dichlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 D	
1-Methylnaphthalene	svocsw	0.002	mg/l	N	<0.008 D				<0.008 D	
2,4,5-Trichlorophenol	svocsw	0.02	mg/l	N	<0.080 D				<0.080 D	
2,4,6-Trichlorophenol	svocsw	0.02	mg/l	N	<0.080 D				<0.080 D	
2,4-Dichlorophenol	svocsw	0.02	mg/l	N	<0.080 D				<0.080 D	
2,4-Dimethylphenol	svocsw	0.02	mg/l	N	<0.080 D				<0.080 D	
2,4-Dinitrophenol	svocsw	0.01	mg/l	N	<0.040 p				<0.040 D	
2,4-Dinitrotoluene	svocsw	0.005	mg/l	N	<0.020 D				<0.020 D	
2,6-Dinitrotoluene	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 p	

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			_							
		Sa	mple ID					003		
		Custo	omer ID	TP6 a	at 0.15	TP6 a	at 1.30	TP6 at 1.60	TP6 a	t 3.00
		Samp	ole Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
		Sampli	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Method Code	MDL	Units	Accred.							
SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
SVOCSW	0.02	mg/l	N	<0.080 D		<0.080 D			<0.080 D	
SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
SVOCSW	0.005	mg/l	N	<0.020 p		<0.020 p			<0.020 D	
SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 D			<0.020 D	
SVOCSW	0.02	mg/l	N	<0.080 D		<0.080 D			<0.080 D	
SVOCSW	0.02	mg/l	N	<0.080 D		<0.080 D			<0.080 D	
SVOCSW	0.005	mg/l	N	<0.020 p		<0.020 D			<0.020 D	
SVOCSW	0.05	mg/l	N	<0.200 D		<0.200 p			<0.200 p	
SVOCSW	0.005	mg/l	N	<0.020 p		<0.020 p			<0.020 D	
SVOCSW	0.005	mg/l	N	<0.020 p		<0.020 D			<0.020 D	
SVOCSW	0.005	mg/l	N	<0.020 p		<0.020 D			<0.020 D	
SVOCSW	0.02	mg/l	N	<0.080 D		<0.080 D			<0.080 D	
SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 p			<0.020 D	
SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 p			<0.020 D	
SVOCSW	0.05	mg/l	N	<0.200 D		<0.200 p			<0.200 D	
SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
	SVOCSW	SVOCSW 0.002 SVOCSW 0.02 SVOCSW 0.005 SVOCSW 0.005 SVOCSW 0.005 SVOCSW 0.02 SVOCSW 0.005 SVOCSW 0.002	Sampli Sampli Sampli Sampli Sampli Sampli Sampli SVOCSW 0.002 mg/l SVOCSW 0.002 mg/l SVOCSW 0.002 mg/l SVOCSW 0.005 mg/l SVOCSW 0.002 mg/l SVOCSW 0.00	SVOCSW 0.002 mg/l N SVOCSW 0.02 mg/l N SVOCSW 0.002 mg/l N SVOCSW 0.005 mg/l N SVOCSW 0.005 mg/l N SVOCSW 0.02 mg/l N SVOCSW 0.005 mg/l N SVOCSW 0.002 mg/l N SVOCSW 0.002 mg/l N	Name	Note	Note	Name	Method Code	Part Part

Project Name: Immingham Dock

Project No: 22052220

Date Issued: 28/06/2022

			Sa	ample ID	0	05	006	007	00)8
			Cust	tomer ID	TP5 a	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	t 3.30
			Sam	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID
			Sampl	ing Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.						
2-Chloronaphthalene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 p	
2-Chlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D	
2-Methylnaphthalene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	
2-Methylphenol	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D	
2-Nitroaniline	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D	
2-Nitrophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D	
3- & 4-Methylphenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D	
3-Nitroaniline	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D	
4,6-Dinitro-2-methylphenol	SVOCSW	0.05	mg/l	N	<0.200 D				<0.200 D	
4-Bromophenyl-phenylether	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D	
4-Chloro-3-methylphenol	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D	
4-Chloroaniline	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D	
4-Chlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D	
4-Chlorophenyl-phenylether	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D	
1-Nitroaniline	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p	
1-Nitrophenol	SVOCSW	0.05	mg/l	N	<0.200 D				<0.200 p	
Acenaphthene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	
Acenaphthylene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	
Anthracene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			Samp	le ID		01		02	003		04
			Custome	er ID	TP6 a	nt 0.15	TP6 a	at 1.30	TP6 at 1.60	TP6 a	at 3.00
			Sample 1	Туре	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units Ac	cred.							
Azobenzene	SVOCSW	0.01	mg/l	N	<0.040 D		<0.040 p			<0.040 p	
Benzo[a]anthracene	SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
Benzo[a]pyrene	SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
Benzo[b]fluoranthene	SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
Benzo[g,h,i]perylene	SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
Benzo[k]fluoranthene	SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
Benzoic Acid	SVOCSW	0.1	mg/l	N	<0.400 D		<0.400 D			<0.400 p	
Benzyl alcohol	SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 p			<0.020 p	
Biphenyl	svocsw	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
ois(2-Chloroethoxy)methane	SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 D			<0.020 p	
ois(2-Chloroethyl)ether	svocsw	0.005	mg/l	N	<0.020 D		<0.020 D			<0.020 p	
ois(2-Chloroisopropyl)ether	SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 D			<0.020 p	
pis(2-Ethylhexyl)phthalate	SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 D			<0.020 p	
Butylbenzylphthalate	SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 D			<0.020 p	
Carbazole	SVOCSW	0.01	mg/l	N	<0.040 D		<0.040 D			<0.040 p	
Chrysene	SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
Coronene	SVOCSW	0.05	mg/l	N	<0.200 D		<0.200 D			<0.200 p	
Dibenzo[a,h]anthracene	SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
Dibenzofuran	svocsw	0.005	mg/l	N	<0.020 D		<0.020 p			<0.020 p	

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			S	ample ID	0	05	006	007	00	08
			Cus	tomer ID	TP5 a	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	nt 3.30
			Sam	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID
				ing Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.						
Azobenzene	SVOCSW	0.01	mg/l	N	<0.040 D				<0.040 p	
Benzo[a]anthracene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	
Benzo[a]pyrene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	
Benzo[b]fluoranthene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	
Benzo[g,h,i]perylene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	
Benzo[k]fluoranthene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	
Benzoic Acid	SVOCSW	0.1	mg/l	N	<0.400 D				<0.400 p	
Benzyl alcohol	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p	
Biphenyl	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	
bis(2-Chloroethoxy)methane	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p	
bis(2-Chloroethyl)ether	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D	
bis(2-Chloroisopropyl)ether	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p	
bis(2-Ethylhexyl)phthalate	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D	
Butylbenzylphthalate	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p	
Carbazole	SVOCSW	0.01	mg/l	N	<0.040 D				<0.040 D	
Chrysene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	
Coronene	SVOCSW	0.05	mg/l	N	<0.200 D				<0.200 p	
Dibenzo[a,h]anthracene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 p	
Dibenzofuran	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p	

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			_							
		Sa	mple ID					003		
		Custo	omer ID	TP6 a	at 0.15	TP6 a	at 1.30	TP6 at 1.60	TP6 a	t 3.00
		Samp	ole Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
		Sampli	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Method Code	MDL	Units	Accred.							
svocsw	0.005	mg/l	N	<0.020 p		<0.020 p			<0.020 p	
SVOCSW	0.005	mg/l	N	<0.020 p		<0.020 p			<0.020 p	
SVOCSW	0.005	mg/l	N	<0.020 p		<0.020 p			<0.020 D	
SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
SVOCSW	0.005	mg/l	N	<0.020 p		<0.020 D			<0.020 D	
SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 D			<0.020 D	
SVOCSW	0.005	mg/l	N	<0.020 p		<0.020 D			<0.020 D	
SVOCSW	0.005	mg/l	N	<0.020 p		<0.020 D			<0.020 D	
SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 p			<0.020 D	
SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 p			<0.020 D	
SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 p			<0.020 D	
SVOCSW	0.005	mg/l	N	<0.020 D		<0.020 p			<0.020 D	
SVOCSW	0.05	mg/l	N	<0.200 D		<0.200 D			<0.200 D	
SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
	SVOCSW	SVOCSW 0.005 SVOCSW 0.005 SVOCSW 0.002 SVOCSW 0.002 SVOCSW 0.002 SVOCSW 0.002 SVOCSW 0.005 SVOCSW 0.005 SVOCSW 0.005 SVOCSW 0.002 SVOCSW 0.005 SVOCSW 0.005	Method Code MDL Units	SVOCSW 0.005 mg/l N SVOCSW 0.005 mg/l N SVOCSW 0.005 mg/l N SVOCSW 0.002 mg/l N SVOCSW 0.002 mg/l N SVOCSW 0.002 mg/l N SVOCSW 0.002 mg/l N SVOCSW 0.005 mg/l N	Sample Type Sample Type Sampling Date Syocsw 0.005 mg/l N <0.020 p	Nethod Code	Note Customer ID Custome	Nethod Code	Method Code	Part Part

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			S	ample ID	0	05	006	007	0	08
			Cus	tomer ID	TP5	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	t 3.30
			Sam	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID
				ing Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.						
Diethylphthalate	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 p	
Dimethylphthalate	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 p	
Di-n-butylphthalate	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D	
Di-n-octylphthalate	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	
Diphenyl ether	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	
Fluoranthene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	
Fluorene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	
Hexachlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 p	
Hexachlorobutadiene	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p	
Hexachlorocyclopentadiene	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p	
Hexachloroethane	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D	
Indeno[1,2,3-cd]pyrene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	
Isophorone	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D	
Naphthalene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	
Nitrobenzene	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p	
N-Nitroso-di-n-propylamine	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p	
N-Nitrosodiphenylamine	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p	
Pentachlorophenol	SVOCSW	0.05	mg/l	N	<0.200 D				<0.200 p	
Phenanthrene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	

Project Name: Immingham Dock

Project No: 22052220

Date Issued: 28/06/2022

			_						т.	
		S	ample ID		-			003	-	04
		Cus	tomer ID	TP6	at 0.15	TP6	at 1.30	TP6 at 1.60	TP6 a	at 3.00
		Sam	ple Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
		Sampl	ing Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Method Code	MDL	Units	Accred.							
SVOCSW	0.02	mg/l	N	<0.080 D		<0.080 D			<0.080 D	
SVOCSW	0.002	mg/l	N	<0.008 D		<0.008 D			<0.008 D	
SVOCSW	0.1	mg/kg^	N		<52.7 D		<0.1			<0.1
SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
SVOCSW	0.1	mg/kg^	U		<52.7 D		0.4			<0.1
SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
SVOCSW	0.1	mg/kg^	U		<52.7 ₪		<0.1			<0.1
SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
SVOCSW	0.5	mg/kg^	N		<263 D		<0.6			<0.6
SVOCSW	0.2	mg/kg^	U		<105 p		<0.2			<0.3
SVOCSW	0.5	mg/kg^	U		<263 p		<0.6			<0.6
SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
SVOCSW	0.1	mg/kg^	U		<52.7 D		0.4			<0.1
SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
SVOCSW	0.5	mg/kg^	N		<263 p		<0.6			<0.6
	SVOCSW SVOCSW	SVOCSW 0.02 SVOCSW 0.002 SVOCSW 0.1 SVOCSW 0.5 SVOCSW 0.5 SVOCSW 0.1 SVOCSW 0.1	Method Code MDL Units	SVOCSW 0.02 mg/l N SVOCSW 0.002 mg/l N SVOCSW 0.1 mg/kg^ N SVOCSW 0.1 mg/kg^ U SVOCSW 0.5 mg/kg^ U SVOCSW 0.5 mg/kg^ U SVOCSW 0.1 mg/kg^ U	Name	Note	Name	Name	Method Code	Notice Part Part

Project Name: Immingham Dock

Project No: 22052220

Date Issued: 28/06/2022

			Sa	ample ID	0	05	006	007	0	08
			Cus	tomer ID	TP5 a	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	at 3.30
			Sam	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID
				ing Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.						
Phenol	SVOCSW	0.02	mg/l	N	<0.080 p				<0.080 D	
Pyrene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D	
1,2,4-Trichlorobenzene	SVOCSW	0.1	mg/kg^	N		<0.1				<0.1
1,2-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
1,3-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
1,4-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
1-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U		4.1*				<0.1
2,4,5-Trichlorophenol	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
2,4,6-Trichlorophenol	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
2,4-Dichlorophenol	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
2,4-Dimethylphenol	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
2,4-Dinitrophenol	SVOCSW	0.5	mg/kg^	N		<0.6				<0.7
2,4-Dinitrotoluene	SVOCSW	0.2	mg/kg^	U		<0.2*				<0.3
2,6-Dinitrotoluene	SVOCSW	0.5	mg/kg^	U		<0.6*				<0.7
2-Chloronaphthalene	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
2-Chlorophenol	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
2-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U		5.9*				<0.1
2-Methylphenol	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
2-Nitroaniline	SVOCSW	0.5	mg/kg^	N		<0.6				<0.7

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			Sar	nple ID		001	0	002	003	0	004
			Custo	omer ID	TP6	at 0.15	TP6	at 1.30	TP6 at 1.60	TP6	at 3.00
			Samp	le Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samplin	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.							
?-Nitrophenol	SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
- & 4-Methylphenol	SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
-Nitroaniline	SVOCSW	0.5	mg/kg^	N		<263 D		<0.6			<0.6
,6-Dinitro-2-methylphenol	SVOCSW	0.2	mg/kg^	N		<105 D		<0.2			<0.3
-Bromophenyl-phenylether	SVOCSW	0.1	mg/kg^	U		<52.7 p		<0.1			<0.1
-Chloro-3-methylphenol	SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
-Chloroaniline	SVOCSW	0.5	mg/kg^	N		<263 D		<0.6			<0.6
-Chlorophenol	SVOCSW	0.5	mg/kg^	U		<263 p		<0.6			<0.6
-Chlorophenyl-phenylether	SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
-Nitroaniline	SVOCSW	0.6	mg/kg^	N		<316 ₪		<0.7			<0.8
-Nitrophenol	SVOCSW	0.5	mg/kg^	N		<263 D		<0.6			<0.6
cenaphthene	SVOCSW	0.1	mg/kg^	U		106		0.2			<0.1
cenaphthylene	SVOCSW	0.1	mg/kg^	U		<52.7* B,D		<0.1* в			<0.1* в
nthracene	SVOCSW	0.1	mg/kg^	U		279* в		0.5* в			<0.1* B
zobenzene	SVOCSW	0.3	mg/kg^	N		<158 p		<0.4			<0.4
enzo[a]anthracene	SVOCSW	0.2	mg/kg^	U		145		0.5			<0.3
enzo[a]pyrene	SVOCSW	0.2	mg/kg^	U		144		0.4			<0.3
enzo[b]fluoranthene	SVOCSW	0.2	mg/kg^	U		140		0.5			<0.3
enzo[g,h,i]perylene	SVOCSW	0.5	mg/kg^	U		<263 p		<0.6			<0.6

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			Sa	mple ID		05	006	007		08
			Cust	omer ID	TP5 a	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	at 3.30
			Samp	le Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID
			Sampli	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.						
2-Nitrophenol	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
3- & 4-Methylphenol	svocsw	0.1	mg/kg^	U		<0.1*				<0.1
3-Nitroaniline	svocsw	0.5	mg/kg^	N		<0.6				<0.7
4,6-Dinitro-2-methylphenol	SVOCSW	0.2	mg/kg^	N		<0.2				<0.3
1-Bromophenyl-phenylether	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
4-Chloro-3-methylphenol	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
4-Chloroaniline	SVOCSW	0.5	mg/kg^	N		4.8				<0.7
4-Chlorophenol	SVOCSW	0.5	mg/kg^	U		<0.6*				<0.7
4-Chlorophenyl-phenylether	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
4-Nitroaniline	SVOCSW	0.6	mg/kg^	N		<0.7				<0.8
4-Nitrophenol	SVOCSW	0.5	mg/kg^	N		<0.6				<0.7
Acenaphthene	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
Acenaphthylene	SVOCSW	0.1	mg/kg^	U		<0.1* _B				<0.1* в
Anthracene	SVOCSW	0.1	mg/kg^	U		<0.1* в				<0.1* в
Azobenzene	SVOCSW	0.3	mg/kg^	N		<0.3				<0.4
Benzo[a]anthracene	SVOCSW	0.2	mg/kg^	U		0.3*				<0.3
enzo[a]pyrene	SVOCSW	0.2	mg/kg^	U		<0.2*				<0.3
enzo[b]fluoranthene	svocsw	0.2	mg/kg^	U		0.3*				<0.3
Benzo[g,h,i]perylene	SVOCSW	0.5	mg/kg^	U		<0.6*				<0.7

Project Name: Immingham Dock Project No: 22052220

Project No: 22052220

Date Issued: 28/06/2022

Analysis Results											
			Sa	mple ID	(001	0	02	003	0	04
			Custo	omer ID	TP6	at 0.15	TP6 a	at 1.30	TP6 at 1.60	TP6	at 3.00
			Samp	le Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samplii	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Benzo[k]fluoranthene	SVOCSW	0.2	mg/kg^	U		<105 D		<0.2			<0.3
Benzoic Acid	SVOCSW	0.5	mg/kg^	N		<263 D		<0.6			<0.6
Benzyl alcohol	SVOCSW	0.5	mg/kg^	U		<263* B,D		<0.6* B			<0.6* _B
Biphenyl	svocsw	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
bis(2-Chloroethoxy)methane	svocsw	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
bis(2-Chloroethyl)ether	SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
bis(2-Chloroisopropyl)ether	SVOCSW	0.5	mg/kg^	U		<263 □		<0.6			<0.6
bis(2-Ethylhexyl)phthalate	SVOCSW	0.2	mg/kg^	U		<105 p		<0.2			<0.3
Butylbenzylphthalate	SVOCSW	0.2	mg/kg^	U		<105 D		<0.2			<0.3
Carbazole	SVOCSW	0.3	mg/kg^	N		<158 p		<0.4			<0.4
Chrysene	svocsw	0.2	mg/kg^	U		140		0.5			<0.3
Coronene	svocsw	0.3	mg/kg^	N		<158 D		<0.4			<0.4
Dibenzo[a,h]anthracene	svocsw	0.5	mg/kg^	U		<263 D		<0.6			<0.6
Dibenzofuran	svocsw	0.1	mg/kg^	U		<52.7 D		0.4			<0.1
Diethylphthalate	svocsw	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
Dimethylphthalate	svocsw	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
Di-n-butylphthalate	SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
Di-n-octylphthalate	SVOCSW	0.2	mg/kg^	U		<105 D		<0.2			<0.3
Diphenyl ether	SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			s	ample ID	0	05	006	007	0	08
						at 0.80	TP5 at 1.30	TP5 at 2.30		at 3.30
			Cus	tomer ID						
			Sam	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID
			Samp	ling Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.						
Benzo[k]fluoranthene	SVOCSW	0.2	mg/kg^	U		<0.2*				<0.3
enzoic Acid	SVOCSW	0.5	mg/kg^	N		<0.6				<0.7
Benzyl alcohol	SVOCSW	0.5	mg/kg^	U		<0.6* в				<0.7* B
Biphenyl	SVOCSW	0.1	mg/kg^	U		0.3*				<0.1
ois(2-Chloroethoxy)methane	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
ois(2-Chloroethyl)ether	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
ois(2-Chloroisopropyl)ether	SVOCSW	0.5	mg/kg^	U		<0.6*				<0.7
is(2-Ethylhexyl)phthalate	SVOCSW	0.2	mg/kg^	U		<0.2*				<0.3
Butylbenzylphthalate	SVOCSW	0.2	mg/kg^	U		<0.2*				<0.3
Carbazole	SVOCSW	0.3	mg/kg^	N		<0.3				<0.4
Chrysene	SVOCSW	0.2	mg/kg^	U		0.4*				<0.3
oronene	SVOCSW	0.3	mg/kg^	N		<0.3				<0.4
bibenzo[a,h]anthracene	SVOCSW	0.5	mg/kg^	U		<0.6*				<0.7
ibenzofuran	SVOCSW	0.1	mg/kg^	U		1.3*				<0.1
iethylphthalate	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
imethylphthalate	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
i-n-butylphthalate	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
i-n-octylphthalate	SVOCSW	0.2	mg/kg^	U		<0.2*				<0.3
Diphenyl ether	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

		Sa	ample ID	(001	0	02	003	0	04
		Cust	tomer ID	TP6	at 0.15	TP6	at 1.30	TP6 at 1.60	TP6 a	at 3.00
		Sam	ple Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
		Sampl	ing Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Method Code	MDL	Units	Accred.							
SVOCSW	0.2	mg/kg^	U		407		1.2			<0.3
SVOCSW	0.2	mg/kg^	U		<105 D		<0.2			<0.3
SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
SVOCSW	0.1	mg/kg^	N		<52.7 D		<0.1			<0.1
SVOCSW	0.1	mg/kg^	N		<52.7 D		<0.1			<0.1
SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
SVOCSW	0.5	mg/kg^	U		<263 D		<0.6			<0.6
SVOCSW	0.1	mg/kg^	N		<52.7 D		<0.1			<0.1
SVOCSW	0.1	mg/kg^	U		<52.7 D		0.4			<0.1
SVOCSW	0.5	mg/kg^	U		<263 D		<0.6			<0.6
SVOCSW	0.9	mg/kg^	N		<474 D		<1.1			<1.2
SVOCSW	0.1	mg/kg^	N		<52.7 D		<0.1			<0.1
SVOCSW	0.5	mg/kg^	N		<263 D		<0.6			<0.6
SVOCSW	0.1	mg/kg^	U		281		1.3			0.2
SVOCSW	0.1	mg/kg^	U		<52.7 D		<0.1			<0.1
SVOCSW	0.2	mg/kg^	U		322		1.0			<0.3
TPHFID (Aliphatic)	0.01	mg/l	U	IS*		IS*			IS*	
TPHFID (Aliphatic)	0.01	mg/l	U	IS*		IS*			IS*	
TPHFID (Aliphatic)	0.01	mg/l	U	IS*		IS*			IS*	
	SVOCSW TPHFID (Aliphatic)	SVOCSW 0.2 SVOCSW 0.1 SVOCSW 0.1 SVOCSW 0.1 SVOCSW 0.1 SVOCSW 0.5 SVOCSW 0.1 SVOCSW 0.5 SVOCSW 0.5 SVOCSW 0.5 SVOCSW 0.1 SVOCSW 0.1 SVOCSW 0.1 SVOCSW 0.1 SVOCSW 0.1 SVOCSW 0.1 SVOCSW 0.2 TPHFID (Aliphatic) 0.01 TPHFID (Aliphatic) 0.01	Method Code MDL Units	SVOCSW 0.2 mg/kg^ U SVOCSW 0.2 mg/kg^ U SVOCSW 0.1 mg/kg^ U SVOCSW 0.1 mg/kg^ N SVOCSW 0.1 mg/kg^ N SVOCSW 0.5 mg/kg^ U SVOCSW 0.1 mg/kg^ U SVOCSW 0.1 mg/kg^ U SVOCSW 0.5 mg/kg^ U SVOCSW 0.9 mg/kg^ N SVOCSW 0.1 mg/kg^ N SVOCSW 0.1 mg/kg^ N SVOCSW 0.1 mg/kg^ U SVOCSW 0.1 mg/kg^ U SVOCSW 0.1 mg/kg^ U TPHFID (Aliphatic) 0.01 mg/l U TPHFID (Aliphatic) 0.01 mg/l U	Sample Type Sampling Date Sample Sampling Date Sample Sampling Date SVOCSW 0.2 mg/kg^ U SVOCSW 0.2 mg/kg^ U SVOCSW 0.1 mg/kg^ N SVOCSW 0.1 mg/kg^ U SVOCSW 0.1 mg/kg^ N SVOCSW 0.1 mg/kg^ U SVOCSW 0.5 mg/kg^ U SVOCSW 0.5 mg/kg^ U SVOCSW 0.5 mg/kg^ N SVOCSW 0.5 mg/kg^ N SVOCSW 0.1 mg/kg^ N SVOCSW 0.1 mg/kg^ N SVOCSW 0.1 mg/kg^ U SVOCSW 0.1 mg/kg^ U SVOCSW 0.1 mg/kg^ U SVOCSW 0.1 mg/kg^ U SVOCSW 0.2 mg/	Note	Customer ID Sample Type Sampling Date Sampling Date	Note	Method Code	Notice Part Part

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			Sa	imple ID		005	006	007	0	08
			Cust	omer ID	TP5	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	at 3.30
			Sam	ole Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID
			Sampl	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.						
Fluoranthene	SVOCSW	0.2	mg/kg^	U		0.4*				<0.3
luorene	SVOCSW	0.2	mg/kg^	U		<0.2*				<0.3
Hexachlorobenzene	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
Hexachlorobutadiene	SVOCSW	0.1	mg/kg^	N		<0.1				<0.1
Hexachlorocyclopentadiene	SVOCSW	0.1	mg/kg^	N		<0.1				<0.1
Hexachloroethane	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
ndeno[1,2,3-cd]pyrene	SVOCSW	0.5	mg/kg^	U		<0.6*				<0.7
sophorone	SVOCSW	0.1	mg/kg^	N		<0.1				<0.1
Naphthalene	SVOCSW	0.1	mg/kg^	U		4.1*				<0.1
Nitrobenzene	SVOCSW	0.5	mg/kg^	U		<0.6*				<0.7
N-Nitroso-di-n-propylamine	SVOCSW	0.9	mg/kg^	N		<1.0				<1.2
N-Nitrosodiphenylamine	SVOCSW	0.1	mg/kg^	N		<0.1				<0.1
Pentachlorophenol	SVOCSW	0.5	mg/kg^	N		<0.6				<0.7
Phenanthrene	SVOCSW	0.1	mg/kg^	U		2.1*				<0.1
Phenol	SVOCSW	0.1	mg/kg^	U		<0.1*				<0.1
Pyrene	SVOCSW	0.2	mg/kg^	U		0.4*				<0.3
·C10-C12 (Aliphatic) H_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U	IS*				IS*	
C12-C16 (Aliphatic) H_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U	IS*				IS*	
·C16-C21 (Aliphatic) H_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U	IS*				IS*	

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

Analysis Results											
			Sa	imple ID	0	001	0	002	003	0	04
			Cust	omer ID	TP6	at 0.15	TP6	at 1.30	TP6 at 1.60	TP6 a	at 3.00
			Samp	ole Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampli	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.							
>C21-C35 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U	IS*		IS*			IS*	
Total TPH >C8-C40 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U	IS*		IS*			IS*	
>C10-C12 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^	U		29.9		<4.84			<5.11
>C12-C16 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^	U		202		4.85			<5.11
>C16-C21 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^	U		398		14.4			8.01
>C21-C35 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	10	mg/kg^	U		2740		99.3			25.4
Total TPH >C8-C40 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	20	mg/kg^	U		4360		120			43.9
>C10-C12 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*		IS*			IS*	
>C12-C16 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*		IS*			IS*	
>C16-C21 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*		IS*			IS*	
>C21-C35 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*		IS*			IS*	
Total TPH >C8-C40 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*		IS*			IS*	
>C10-C12 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^	U		31.0		<4.84			<5.11
>C12-C16 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^	U		428		7.35			5.19
>C16-C21 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^	U		1430* в		15.0* в			11.3* в
>C21-C35 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	10	mg/kg^	U		6090		74.6			38.9
Total TPH >C8-C40 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	20	mg/kg^	U		9450		144			78.6
>C10-C12 EH_1D_Total	TPHFID	0.01	mg/l	U	IS*		IS*			IS*	
>C12-C16 EH_1D_Total	TPHFID	0.01	mg/l	U	IS*		IS*			IS*	

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			S	ample ID		05	006	007		08
			Cus	tomer ID	TP5 a	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	at 3.30
			Sam	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID
			Sampl	ing Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.						
>C21-C35 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U	IS*				IS*	
Fotal TPH >C8-C40 (Aliphatic) H_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U	IS*				IS*	
C10-C12 (Aliphatic) H_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^	U		7.96*				<5.36
C12-C16 (Aliphatic) H_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^	U		19.9*				<5.36
·C16-C21 (Aliphatic) ·H_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^	U		19.5*				<5.36
C21-C35 (Aliphatic) H_CU_1D_AL	TPHFIDUS (Aliphatic)	10	mg/kg^	U		24.8*				<13.4
Total TPH >C8-C40 (Aliphatic) H_CU_1D_AL	TPHFIDUS (Aliphatic)	20	mg/kg^	U		85.2*				<26.8
C10-C12 (Aromatic) H_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*				IS*	
C12-C16 (Aromatic) H_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*				IS*	
C16-C21 (Aromatic) H_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*				IS*	
C21-C35 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U	IS*				IS*	
otal TPH >C8-C40 (Aromatic) H_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*				IS*	
-C10-C12 (Aromatic) H_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^	U		7.78*				<5.36
C12-C16 (Aromatic) H_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^	U		31.5*				<5.36
C16-C21 (Aromatic) H_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^	U		40.0* в				<5.36* в
C21-C35 (Aromatic) H_CU_1D_AR	TPHFIDUS (Aromatic)	10	mg/kg^	U		81.9*				16.5
otal TPH >C8-C40 (Aromatic) H_CU_1D_AR	TPHFIDUS (Aromatic)	20	mg/kg^	U		184*				40.1
C10-C12 H_1D_Total	TPHFID	0.01	mg/l	U	IS*				IS*	
C12-C16 H_1D_Total	TPHFID	0.01	mg/l	U	IS*				IS*	

Project Name: Immingham Dock

Project No: 22052220

Date Issued: 28/06/2022

			8	ample ID	O	001	0	02	003	0	04
			Cus	stomer ID	TP6	at 0.15	TP6 a	at 1.30	TP6 at 1.60	TP6 a	at 3.00
			San	ple Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samp	ling Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.							
C16-C21 H_1D_Total	TPHFID	0.01	mg/l	U	IS*		IS*			IS*	
C21-C35 H_1D_Total	TPHFID	0.01	mg/l	U	IS*		IS*			IS*	
C8-C10 H_1D_Total	TPHFID	0.01	mg/l	U	IS*		IS*			IS*	
otal TPH >C8-C40 H_1D_Total	TPHFID	0.01	mg/l	U	IS*		IS*			IS*	
,1,1,2-Tetrachloroethane	VOCHSAW	1	μg/l	N	<1		<1			<1	
,1,1-Trichloroethane	VOCHSAW	1	μg/l	N	<1		<1			<1	
,1,2,2-Tetrachloroethane	VOCHSAW	1	μg/l	N	<1		<1			<1	
1,2-Trichloroethane	VOCHSAW	1	µg/l	N	<1		<1			<1	
,1-Dichloroethane	VOCHSAW	1	μg/l	N	<1		<1			<1	
,1-Dichloroethene	VOCHSAW	1	μg/l	N	<1		<1			<1	
,1-Dichloropropene	VOCHSAW	1	μg/l	N	<1		<1			<1	
2,3-Trichlorobenzene	VOCHSAW	5	μg/l	N	<5		<5			<5	
,2,3-Trichloropropane	VOCHSAW	1	μg/l	N	<1		<1			<1	
2,4-Trichlorobenzene	VOCHSAW	5	μg/l	N	<5		<5			<5	
2,4-Trimethylbenzene	VOCHSAW	1	µg/l	N	<1		<1			<1	
2-Dibromo-3-chloropropane	VOCHSAW	5	µg/l	N	<5		<5			<5	
2-Dibromoethane	VOCHSAW	1	µg/l	N	<1		<1			<1	
2-Dichlorobenzene	VOCHSAW	5	µg/l	N	<5		<5			<5	
,2-Dichloroethane	VOCHSAW	1	μg/l	N	<1		<1			<1	

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			s	ample ID	0	05	006	007	00	08
			Cus	tomer ID	TP5 a	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	t 3.30
			Sam	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID
			Samp	ling Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.						
>C16-C21 EH_1D_Total	TPHFID	0.01	mg/l	U	IS*				IS*	
>C21-C35 EH_1D_Total	TPHFID	0.01	mg/l	U	IS*				IS*	
>C8-C10 EH_1D_Total	TPHFID	0.01	mg/l	U	IS*				IS*	
Total TPH >C8-C40 EH_1D_Total	TPHFID	0.01	mg/l	U	IS*				IS*	
1,1,1,2-Tetrachloroethane	VOCHSAW	1	μg/l	N	<1				<1	
1,1,1-Trichloroethane	VOCHSAW	1	μg/l	N	<1				<1	
1,1,2,2-Tetrachloroethane	VOCHSAW	1	μg/l	N	<1				<1	
1,1,2-Trichloroethane	VOCHSAW	1	µg/l	N	<1				<1	
1,1-Dichloroethane	VOCHSAW	1	μg/l	N	<1				<1	
1,1-Dichloroethene	VOCHSAW	1	μg/l	N	<1				<1	
1,1-Dichloropropene	VOCHSAW	1	μg/l	N	<1				<1	
1,2,3-Trichlorobenzene	VOCHSAW	5	μg/l	N	<5				<5	
1,2,3-Trichloropropane	VOCHSAW	1	μg/l	N	<1				<1	
1,2,4-Trichlorobenzene	VOCHSAW	5	μg/l	N	<5				<5	
1,2,4-Trimethylbenzene	VOCHSAW	1	μg/l	N	<1				<1	
1,2-Dibromo-3-chloropropane	VOCHSAW	5	µg/l	N	<5				<5	
1,2-Dibromoethane	VOCHSAW	1	µg/l	N	<1				<1	
1,2-Dichlorobenzene	VOCHSAW	5	µg/l	N	<5				<5	
1,2-Dichloroethane	VOCHSAW	1	μg/l	N	<1				<1	

Project Name: Immingham Dock Project No: 22052220

Project No: 22052220

Date Issued: 28/06/2022

Analysis Results											
			Sa	imple ID	0	001	0	02	003	0	04
			Custo	omer ID	TP6	at 0.15	TP6 a	at 1.30	TP6 at 1.60	TP6 a	at 3.00
			Samp	ole Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampli	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.							
1,2-Dichloropropane	VOCHSAW	1	μg/l	N	<1		<1			<1	
1,3,5-Trimethylbenzene	VOCHSAW	0.6	µg/l	N	<0.6		<0.6			<0.6	
1,3-Dichlorobenzene	VOCHSAW	1	µg/l	N	<1		<1			<1	
1,3-Dichloropropane	VOCHSAW	1	µg/l	N	<1		<1			<1	
1,4-Dichlorobenzene	VOCHSAW	1	µg/l	N	<1		<1			<1	
2,2-Dichloropropane	VOCHSAW	1	µg/l	N	<1		<1			<1	
2-Chlorotoluene	VOCHSAW	1	µg/l	N	<1		<1			<1	
4-Chlorotoluene	VOCHSAW	1	µg/l	N	<1		<1			<1	
Benzene	VOCHSAW	1	µg/l	N	<1		<1			<1	
Bromobenzene	VOCHSAW	1	µg/l	N	<1		<1			<1	
Bromochloromethane	VOCHSAW	1	µg/l	N	<1		<1			<1	
Bromodichloromethane	VOCHSAW	1	μg/l	N	<1		<1			<1	
Bromoform	VOCHSAW	1	µg/l	N	<1		<1			<1	
Bromomethane	VOCHSAW	5	μg/l	N	<5		<5			<5	
Carbon Tetrachloride	VOCHSAW	1	μg/l	N	<1		<1			<1	
Chlorobenzene	VOCHSAW	1	μg/l	N	<1		<1			<1	
Chloroethane	VOCHSAW	5	µg/l	N	<5		<5			<5	
Chloroform	VOCHSAW	5	µg/l	N	<5		<5			<5	
Chloromethane	VOCHSAW	1	µg/l	N	<1		<1			<1	

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			5	Sample ID	(005	006	007	0	08
			Cu	stomer ID	TP5	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	t 3.30
			e	nple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID
				oling Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.	24/00/2022	24/00/2022	24/00/2022	24/00/2022	24/00/2022	24/00/2022
1,2-Dichloropropane	VOCHSAW	1	μg/l	N	<1				<1	
1,3,5-Trimethylbenzene	VOCHSAW	0.6	µg/l	N	<0.6				<0.6	
1,3-Dichlorobenzene	VOCHSAW	1	μg/l	N	<1				<1	
1,3-Dichloropropane	VOCHSAW	1	µg/l	N	<1				<1	
1,4-Dichlorobenzene	VOCHSAW	1	µg/l	N	<1				<1	
2,2-Dichloropropane	VOCHSAW	1	μg/l	N	<1				<1	
2-Chlorotoluene	VOCHSAW	1	μg/l	N	<1				<1	
4-Chlorotoluene	VOCHSAW	1	μg/l	N	<1				<1	
Benzene	VOCHSAW	1	μg/l	N	<1				<1	
Bromobenzene	VOCHSAW	1	μg/l	N	<1				<1	
Bromochloromethane	VOCHSAW	1	μg/l	N	<1				<1	
Bromodichloromethane	VOCHSAW	1	μg/l	N	<1				<1	
Bromoform	VOCHSAW	1	μg/l	N	<1				<1	
Bromomethane	VOCHSAW	5	μg/l	N	<5				<5	
Carbon Tetrachloride	VOCHSAW	1	μg/l	N	<1				<1	
Chlorobenzene	VOCHSAW	1	μg/l	N	<1				<1	
Chloroethane	VOCHSAW	5	μg/l	N	<5				<5	
Chloroform	VOCHSAW	5	μg/l	N	<5				<5	
Chloromethane	VOCHSAW	1	μg/l	N	<1				<1	

Project Name: Immingham Dock

Project No: 22052220

Date Issued: 28/06/2022

			Sa	imple ID	O	01	0	02	003	0	04
			Cust	omer ID	TP6	at 0.15	TP6 a	at 1.30	TP6 at 1.60	TP6 a	at 3.00
			Samı	ple Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampli	ing Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.							
cis 1,2-Dichloroethene	VOCHSAW	1	μg/l	N	<1		<1			<1	
cis 1,3-Dichloropropene	VOCHSAW	1	μg/l	N	<1		<1			<1	
Dibromochloromethane	VOCHSAW	1	μg/l	N	<1		<1			<1	
Dibromomethane	VOCHSAW	1	μg/l	N	<1		<1			<1	
Dichlorodifluoromethane	VOCHSAW	1	μg/l	N	<1		<1			<1	
Ethylbenzene	VOCHSAW	0.5	μg/l	N	<0.5		<0.5			<0.5	
Hexachlorobutadiene	VOCHSAW	5	μg/l	N	<5		<5			<5	
iso-Propylbenzene	VOCHSAW	1	μg/l	N	<1		<1			<1	
m and p-Xylene	VOCHSAW	1	μg/l	N	<1		<1			<1	
МТВЕ	VOCHSAW	1	μg/l	N	<1		<1			<1	
Naphthalene	VOCHSAW	5	μg/l	N	<5		<5			<5	
n-Butylbenzene	VOCHSAW	1	μg/l	N	<1		<1			<1	
o-Xylene	VOCHSAW	1	μg/l	N	<1		<1			<1	
o-Isopropyltoluene	VOCHSAW	1	μg/l	N	<1		<1			<1	
Propylbenzene	VOCHSAW	1	μg/l	N	<1		<1			<1	
sec-Butylbenzene	VOCHSAW	1	μg/l	N	<1		<1			<1	
Styrene	VOCHSAW	1	μg/l	N	<1		<1			<1	
ert-Butylbenzene	VOCHSAW	1	μg/l	N	<1		<1			<1	
Tetrachloroethene	VOCHSAW	5	μg/l	N	<5		<5			<5	

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			:	Sample ID	(005	006	007	0	08
			Cu	stomer ID	TP5	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	at 3.30
			Sar	nple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID
				oling Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.						
cis 1,2-Dichloroethene	VOCHSAW	1	μg/l	N	<1				<1	
cis 1,3-Dichloropropene	VOCHSAW	1	µg/l	N	<1				<1	
Dibromochloromethane	VOCHSAW	1	μg/l	N	<1				<1	
Dibromomethane	VOCHSAW	1	μg/l	N	<1				<1	
Dichlorodifluoromethane	VOCHSAW	1	μg/l	N	<1				<1	
Ethylbenzene	VOCHSAW	0.5	μg/l	N	<0.5				<0.5	
Hexachlorobutadiene	VOCHSAW	5	μg/l	N	<5				<5	
iso-Propylbenzene	VOCHSAW	1	μg/l	N	<1				<1	
m and p-Xylene	VOCHSAW	1	μg/l	N	<1				<1	
MTBE	VOCHSAW	1	μg/l	N	<1				<1	
Naphthalene	VOCHSAW	5	μg/l	N	<5				<5	
n-Butylbenzene	VOCHSAW	1	μg/l	N	<1				<1	
o-Xylene	VOCHSAW	1	μg/l	N	<1				<1	
p-Isopropyltoluene	VOCHSAW	1	μg/l	N	<1				<1	
Propylbenzene	VOCHSAW	1	μg/l	N	<1				<1	
sec-Butylbenzene	VOCHSAW	1	μg/l	N	<1				<1	
Styrene	VOCHSAW	1	μg/l	N	<1				<1	
tert-Butylbenzene	VOCHSAW	1	μg/l	N	<1				<1	
Tetrachloroethene	VOCHSAW	5	μg/l	N	<5				<5	

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			Sa	mple ID		001	0	02	003	0	04
			Cust	omer ID	TP6	at 0.15	TP6 a	at 1.30	TP6 at 1.60	TP6	at 3.00
			Samp	ole Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampli	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Toluene	VOCHSAW	1	µg/l	N	<1		<1			<1	
rans 1,2-Dichloroethene	VOCHSAW	1	μg/l	N	<1		<1			<1	
rrans 1,3-Dichloropropene	VOCHSAW	1	μg/l	N	<1		<1			<1	
Trichloroethene	VOCHSAW	5	μg/l	N	<5		<5			<5	
Trichlorofluoromethane	VOCHSAW	1	μg/l	N	<1		<1			<1	
Vinyl Chloride	VOCHSAW	1	μg/l	N	<1		<1			<1	
1,1,1,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
1,1,1-Trichloroethane	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
1,1,2,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	N		<1		<1			<1
1,1,2-Trichloroethane	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
1,1-Dichloroethane	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
1,1-Dichloroethene	VOCHSAS	1	μg/kg^	U		<1		<1			<1
1,1-Dichloropropene	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
1,2,3-Trichlorobenzene	VOCHSAS	3	μg/kg^	UM		<3* _B		<4* _B			<4* B
1,2,3-Trichloropropane	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
1,2,4-Trichlorobenzene	VOCHSAS	3	μg/kg^	N		<3		<4			<4
1,2,4-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM		<1		4			2
,2-Dibromo-3-chloropropane	VOCHSAS	1	μg/kg^	U		<1		<1			<1
1,2-Dibromoethane	VOCHSAS	1	μg/kg^	UM		<1		<1			<1

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

	Sample II			Sample ID	C	005	006	007	0	08
			Cus	stomer ID	TP5	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	at 3.30
			San	nple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID
				ling Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.						
Toluene	VOCHSAW	1	μg/l	N	<1				<1	
trans 1,2-Dichloroethene	VOCHSAW	1	μg/l	N	<1				<1	
trans 1,3-Dichloropropene	VOCHSAW	1	μg/l	N	<1				<1	
Trichloroethene	VOCHSAW	5	µg/l	N	<5				<5	
Trichlorofluoromethane	VOCHSAW	1	µg/l	N	<1				<1	
Vinyl Chloride	VOCHSAW	1	μg/l	N	<1				<1	
1,1,1,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	UM		<1*				<1
1,1,1-Trichloroethane	VOCHSAS	1	μg/kg^	UM		<1*				<1
1,1,2,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	N		<1				<1
1,1,2-Trichloroethane	VOCHSAS	1	μg/kg^	UM		<1*				<1
1,1-Dichloroethane	VOCHSAS	1	μg/kg^	UM		<1*				<1
1,1-Dichloroethene	VOCHSAS	1	μg/kg^	U		<1*				<1
1,1-Dichloropropene	VOCHSAS	1	μg/kg^	UM		<1*				<1
1,2,3-Trichlorobenzene	VOCHSAS	3	μg/kg^	UM		<3* _B				<4* B
1,2,3-Trichloropropane	VOCHSAS	1	μg/kg^	UM		<1*				<1
1,2,4-Trichlorobenzene	VOCHSAS	3	μg/kg^	N		<3				<4
1,2,4-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM		<1*				<1
1,2-Dibromo-3-chloropropane	VOCHSAS	1	μg/kg^	U		<1*				<1
1,2-Dibromoethane	VOCHSAS	1	μg/kg^	UM		<1*				<1

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

Analysis Results												
			Sai	mple ID	0	01	0	002	003	0	004	
			Custo	omer ID	TP6	at 0.15	TP6	at 1.30	TP6 at 1.60	TP6 a	at 3.00	
			Samp	le Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID	
			Samplin	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	
Analysis	Method Code	MDL	Units	Accred.								
1,2-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM		<1		<1			<1	
1,2-Dichloroethane	VOCHSAS	1	μg/kg^	UM		<1		<1			<1	
1,2-Dichloropropane	VOCHSAS	1	μg/kg^	UM		<1		<1			<1	
1,3,5-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM		<1		2			<1	
1,3-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM		<1		<1			<1	
1,3-Dichloropropane	VOCHSAS	1	μg/kg^	UM		<1		<1			<1	
1,4-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM		<1		<1			<1	
2,2-Dichloropropane	VOCHSAS	2	μg/kg^	UM		<2		<2			<3	
2-Chlorotoluene	VOCHSAS	1	μg/kg^	UM		<1* B		<1* B			<1* B	
4-Chlorotoluene	VOCHSAS	1	μg/kg^	UM		<1		<1			<1	
Benzene	VOCHSAS	1	μg/kg^	UM		<1		2			<1	
Bromobenzene	VOCHSAS	1	μg/kg^	UM		<1		<1			<1	
Bromochloromethane	VOCHSAS	1	μg/kg^	UM		<1		<1			<1	
Bromodichloromethane	VOCHSAS	1	μg/kg^	UM		<1		<1			<1	
Bromoform	VOCHSAS	1	μg/kg^	UM		<1		<1			<1	
Bromomethane	VOCHSAS	1	μg/kg^	UM		<1		<1			<1	
Carbon Tetrachloride	VOCHSAS	1	μg/kg^	UM		<1		<1			<1	
Chlorobenzene	VOCHSAS	1	μg/kg^	UM		<1		<1			<1	
Chloroethane	VOCHSAS	2	μg/kg^	UM		<2		<2			<3	
						1			1			

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

	Sample ID		ample ID	0	05	006	007	008		
			Cus	tomer ID	TP5 a	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	at 3.30
			Sam	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID
				ling Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.						
1,2-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM		<1*				<1
1,2-Dichloroethane	VOCHSAS	1	μg/kg^	UM		<1*				<1
1,2-Dichloropropane	VOCHSAS	1	μg/kg^	UM		<1*				<1
1,3,5-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM		<1*				<1
1,3-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM		<1*				<1
1,3-Dichloropropane	VOCHSAS	1	μg/kg^	UM		<1*				<1
1,4-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM		<1*				<1
2,2-Dichloropropane	VOCHSAS	2	μg/kg^	UM		<2*				<3
2-Chlorotoluene	VOCHSAS	1	μg/kg^	UM		<1* _B				<1* B
4-Chlorotoluene	VOCHSAS	1	μg/kg^	UM		<1*				<1
Benzene	VOCHSAS	1	μg/kg^	UM		<1*				<1
Bromobenzene	VOCHSAS	1	μg/kg^	UM		<1*				<1
Bromochloromethane	VOCHSAS	1	μg/kg^	UM		<1*				<1
Bromodichloromethane	VOCHSAS	1	μg/kg^	UM		<1*				<1
Bromoform	VOCHSAS	1	μg/kg^	UM		<1*				<1
Bromomethane	VOCHSAS	1	μg/kg^	UM		<1*				<1
Carbon Tetrachloride	VOCHSAS	1	μg/kg^	UM		<1*				<1
Chlorobenzene	VOCHSAS	1	μg/kg^	UM		<1*				<1
Chloroethane	VOCHSAS	2	μg/kg^	UM		<2*				<3

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			Sa	mple ID	0	01	0	002	003	O	04
			Cust	omer ID	TP6	at 0.15	TP6	at 1.30	TP6 at 1.60	TP6	at 3.00
			Samp	ole Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampli	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Chloroform	VOCHSAS	1	μg/kg^	UM		2		3			3
Chloromethane	VOCHSAS	3	μg/kg^	U		<3		<4			<4
cis 1,2-Dichloroethene	VOCHSAS	5	μg/kg^	UM		<5		<6			<7
cis 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
Dibromochloromethane	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
Dibromomethane	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
Dichlorodifluoromethane	VOCHSAS	1	μg/kg^	N		<1		<1			<1
Ethylbenzene	VOCHSAS	2	μg/kg^	UM		<2		3			<3
Hexachlorobutadiene	VOCHSAS	2	μg/kg^	N		<2		<2			<3
iso-Propylbenzene	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
m and p-Xylene	VOCHSAS	4	μg/kg^	UM		<4		12			<6
MTBE	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
Naphthalene	VOCHSAS	5	μg/kg^	UM		<5* B		10* в			<7* _B
n-Butylbenzene	VOCHSAS	1	μg/kg^	U		<1		<1			<1
o-Xylene	VOCHSAS	2	μg/kg^	UM		<2		5			<3
p-Isopropyltoluene	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
Propylbenzene	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
sec-Butylbenzene	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
Styrene	VOCHSAS	1	μg/kg^	UM		<1		<1			<1

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			S	ample ID		05	006	007	008		
			Cus	tomer ID	TP5 a	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	at 3.30	
			Sam	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	
			Sampl	ing Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	
Analysis	Method Code	MDL	Units	Accred.							
Chloroform	VOCHSAS	1	μg/kg^	UM		2*				3	
Chloromethane	VOCHSAS	3	μg/kg^	U		<3*				<4	
cis 1,2-Dichloroethene	VOCHSAS	5	μg/kg^	UM		<6*				<7	
cis 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM		<1*				<1	
Dibromochloromethane	VOCHSAS	1	μg/kg^	UM		<1*				<1	
Dibromomethane	VOCHSAS	1	μg/kg^	UM		<1*				<1	
Dichlorodifluoromethane	VOCHSAS	1	μg/kg^	N		<1				<1	
Ethylbenzene	VOCHSAS	2	μg/kg^	UM		<2*				<3	
Hexachlorobutadiene	VOCHSAS	2	μg/kg^	N		<2				<3	
so-Propylbenzene	VOCHSAS	1	μg/kg^	UM		<1*				<1	
m and p-Xylene	VOCHSAS	4	μg/kg^	UM		<5*				<5	
МТВЕ	VOCHSAS	1	μg/kg^	UM		<1*				<1	
Naphthalene	VOCHSAS	5	μg/kg^	UM		<6* B				<7* _B	
n-Butylbenzene	VOCHSAS	1	μg/kg^	U		<1*				<1	
o-Xylene	VOCHSAS	2	μg/kg^	UM		<2*				<3	
o-Isopropyltoluene	VOCHSAS	1	μg/kg^	UM		<1*				<1	
Propylbenzene	VOCHSAS	1	μg/kg^	UM		<1*				<1	
ec-Butylbenzene	VOCHSAS	1	μg/kg^	UM		<1*				<1	
Styrene	VOCHSAS	1	μg/kg^	UM		<1*				<1	

Project Name: Immingham Dock

Project No: 22052220

Date Issued: 28/06/2022

Alidiysis Results											
			Sa	mple ID	(001	0	02	003	0	04
			Cust	omer ID	TP6	at 0.15	TP6	at 1.30	TP6 at 1.60	TP6 at 3.00	
			Samı	ole Type	LPL	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampli	ng Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022
Analysis	Method Code	MDL	Units	Accred.							
tert-Butylbenzene	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
Tetrachloroethene	VOCHSAS	3	μg/kg^	UM		<3		<4			<4
Toluene	VOCHSAS	5	μg/kg^	UM		<5		<6			<7
trans 1,2-Dichloroethene	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
trans 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
Trichloroethene	VOCHSAS	1	μg/kg^	U		<1		<1			<1
Trichlorofluoromethane	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
Vinyl Chloride	VOCHSAS	1	μg/kg^	UM		<1		<1			<1
Total Moisture at 35 C	CLANDPREP	0.1	%	N		5.1		17.3	16.9		21.7
Description of Solid Material	CLANDPREP		-	N		SAND		CLAY	CLAY		CLAY
Equivalent Weight of Dry Material (kg)	Leachate Prep CEN 2:1		kg	N		0.400		0.400			0.400
Fraction above 4 mm (%)	Leachate Prep CEN 2:1		%	N		0		0			0
Fraction of non-crushable material (%)	Leachate Prep CEN 2:1		%	N		0		0			0
Volume of Water for 2:1 Leach (Itr)	Leachate Prep CEN 2:1		I	N		0.777		0.715			0.672
Weight of Sample Leached (kg)	Leachate Prep CEN 2:1		kg	N		0.423		0.485			0.528
Asbestos Identification	SUB020		-	N		NAIIS		NAIIS	NAIIS		NAIIS

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

			s	ample ID	0	05	006	007	008		
			Custom		TP5	at 0.80	TP5 at 1.30	TP5 at 2.30	TP5 a	at 3.30	
			Sam	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	
			Samp	ing Date	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	24/05/2022	
Analysis	Method Code	MDL	Units	Accred.							
ert-Butylbenzene	VOCHSAS	1	μg/kg^	UM		<1*				<1	
Tetrachloroethene	VOCHSAS	3	μg/kg^	UM		<3*				<4	
Toluene	VOCHSAS	5	μg/kg^	UM		<6*				<7	
rans 1,2-Dichloroethene	VOCHSAS	1	μg/kg^	UM		<1*				<1	
rans 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM		<1*				<1	
Frichloroethene	VOCHSAS	1	μg/kg^	U		<1*				<1	
Frichlorofluoromethane	VOCHSAS	1	μg/kg^	UM		<1*				<1	
/inyl Chloride	VOCHSAS	1	μg/kg^	UM		<1*				1	
Total Moisture at 35 C	CLANDPREP	0.1	%	N		11.9	18.0	16.6		25.4	
Description of Solid Material	CLANDPREP		-	N		GRAVEL	CLAY	CLAY		CLAY	
Equivalent Weight of Dry Material (kg)	Leachate Prep CEN 2:1		kg	N		0.400				0.400	
Fraction above 4 mm (%)	Leachate Prep CEN 2:1		%	N		0				0	
Fraction of non-crushable material (%)	Leachate Prep CEN 2:1		%	N		0				0	
olume of Water for 2:1 Leach (ltr)	Leachate Prep CEN 2:1		I	N		0.751				0.656	
Veight of Sample Leached (kg)	Leachate Prep CEN 2:1		kg	N		0.449				0.544	
Asbestos Identification	SUB020		-	N		NAIIS	NAIIS	NAIIS		NAIIS	

CERTIFICATE OF ANALYSIS

ANALYSIS REQUESTED BY:

SOCOTEC UK Ltd

CONTRACT NO: \$25872-4

Environmental Chemistry

DATE OF ISSUE: 07.06.22

PO Box 100 Burton upon Trent Staffordshire DE15 0XD

DATE SAMPLES RECEIVED: 31.05.22

DATE ANALYSIS COMPLETED: 07.06.22

DESCRIPTION: Eight soil/loose aggregate samples each weighing approximately 1.0-1.6kg.

ANALYSIS REQUESTED: Qualitative and quantitative analysis of soil/loose aggregate samples for

mass determination of asbestos.

METHODS:

Qualitative - The samples were analysed qualitatively for asbestos by polarised light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative - The analysis was carried out using our documented in-house method based on HSE Contract Research Report No. 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al. 1996) and HSG 248. Our method includes initial examination of the entire sample, detailed analysis of a representative sub-sample and quantification by hand picking/weighing and/or fibre counting/sizing as appropriate.

RESULTS:

Initial Screening

No asbestos was detected in any of the soil samples by stereo-binocular and polarised light microscopy.

A summary of the results is given in Table 1.

Page 1 of 2

CONTRACT NO: \$25872-4 **DATE OF ISSUE:** 07.06.22

RESULTS: (cont.)

Table 1: Qualitative Results

SOCOTEC Job I.D: 22052220

IOM sample number	SOCOTEC Sample ID	Client Sample ID	ACM type detected	PLM result
S25872-08	22052220-001	TP6	-	No Asbestos Detected
S25872-09	22052220-002	TP6	-	No Asbestos Detected
S25872-10	22052220-003	TP6	-	No Asbestos Detected
S25872-11	22052220-004	TP6	-	No Asbestos Detected
S25872-12	22052220-005	TP5	-	No Asbestos Detected
S25872-13	22052220-006	TP5	-	No Asbestos Detected
S25872-14	22052220-007	TP5	-	No Asbestos Detected
S25872-15	22052220-008	TP5	-	No Asbestos Detected

Our detection limit for this method is 0.001%.

COMMENTS:

IOM Consulting cannot accept responsibility for samples that have been incorrectly collected or despatched by external clients.

Any opinions and interpretations expressed herein are out with the scope of our UKAS accreditation.

AUTHORISED BY:

J Simpson Senior Laboratory Analyst

Project Name: Immingham Dock Project No: 22052220 Date Issued: 28/06/2022

Deviating Sample Rep	port					, e		
			ncorrect Container	Incorrect Label	Headspace	Incorrect/No Preservative	No Sampling Date	Holding Time
Sample Reference	Text ID	Reported Name	ioou	Incori	Неаф	Incor	NO S	Holdi
TP6 at 0.15	22052220-001	PHSOIL						✓
TP6 at 0.15	22052220-001	svocsw						✓
TP6 at 0.15	22052220-001	PHEMS						✓
TP6 at 0.15	22052220-001	KONENS						✓
TP6 at 1.30	22052220-002	PHSOIL						✓
TP6 at 1.30	22052220-002	svocsw						✓
TP6 at 1.30	22052220-002	PHEMS						✓
TP6 at 1.30	22052220-002	KONENS						✓
TP6 at 1.60	22052220-003	PHSOIL		_				✓
TP6 at 3.00	22052220-004	PHSOIL						✓
TP6 at 3.00	22052220-004	SVOCSW		_	-			✓
TP6 at 3.00	22052220-004	PHEMS		_				✓
TP6 at 3.00	22052220-004	KONENS						✓
TP5 at 0.80	22052220-005	PHSOIL			-			✓
TP5 at 0.80	22052220-005	SVOCSW						✓
TP5 at 0.80	22052220-005	PHEMS						✓
TP5 at 0.80	22052220-005	KONENS						✓
TP5 at 1.30	22052220-006	PHSOIL		_				✓
TP5 at 2.30	22052220-007	PHSOIL						✓
TP5 at 3.30	22052220-008	PHSOIL						✓
TP5 at 3.30	22052220-008	SVOCSW						✓
TP5 at 3.30	22052220-008	PHEMS						✓
TP5 at 3.30	22052220-008	KONENS						_ <u> </u>

Project Name: Immingham Dock

Project No: 22052220 Date Issued: 28/06/2022

Analysis Method

Analysis Analysis Type **Analysis Method AMMAR INORGANIC** As Received **BTEXHSA ORGANIC** Unfiltered **CLANDPREP PHYS** As Received **ORGANIC GROHSA** Unfiltered GROHSA/BTEXHSA **ORGANIC** As Received **ICPBOR METALS** Air Dried & Ground **ICPMSS METALS** Air Dried & Ground ICPMSW (Dissolved) **METALS** Filtered Air Dried & Ground

ICPSOIL METALS

ICPWATVAR (Dissolved) **METALS** Filtered **INORGANIC** Filtered **KONENS** Leachate Prep CEN 2:1 **PHYS** As Received **PAHMSUS ORGANIC** As Received **PHCONDW INORGANIC** Filtered PHEHPLCUV **ORGANIC** Filtered **PHEMS ORGANIC** As Received

PHSOIL INORGANIC As Received Filtered SFAPI **INORGANIC SUB020** SUBCON Filtered

ORGANIC SVOCSW ORGANIC Filtered **TPHFID** TPHFID (Aliphatic) **ORGANIC** Filtered Filtered TPHFID (Aromatic) **ORGANIC** As Received TPHFIDUS (Aliphatic) **ORGANIC** TPHFIDUS (Aromatic) **ORGANIC** As Received **VOCHSAS ORGANIC** As Received **VOCHSAW ORGANIC** Unfiltered

WSLM13 **INORGANIC** Filtered WSLM59 **INORGANIC** Air Dried & Ground

Project Report Notes

V2 - Sample depths added

Project Name: Immingham Dock Project No: 22052220

Date Issued: 28/06/2022

Result Report Notes

Letters alongside results signify that the result has associated report notes. The report notes are a follows:

<u>Letter</u>	<u>Note</u>
A	Due to the matrix of the sample the laboratory has had to deviate from our standard protocols to be able to process the sample and provide a result. Where applicable the accreditation has been removed and this should be taken into consideration when utilising the data.
В	The QC associated with this result has not wholly met the QMS requirements, the accreditation has therefore been removed. However, the Laboratory has confidence in the performance of the method as a whole and that the integrity of the data has not been significantly compromised.
С	Due to matrix interference the internal standard and/or surrogate has not met the QMS requirements. This should be taken into consideration when utilising the data.
D	A non-standard volume or mass has been used for this test which has resulted in a raised detection limit.
E	Due to recoveries beyond our calibration range and following the maximum size of dilution allowed, the result cannot be quantified and as such the result will appear as a greater than symbol (>) with the accreditation removed. This data should be used for indicative purposes only.
F	Based on the sample history, appearance and smell a dilution was applied prior to testing. Unfortunately, the result is either above (>) or below (<) our calibration range. Results above our calibration range have accreditation removed. The data should be used for indicative purposes only.
G	The day 5 oxygen reading was below the capability of the instrument to detect, and therefore the calculated BOD has been reported unaccredited for guidance purposes only.

HWOL Acronym Key

EΗ

Acronvn	n D	escri	ntion	1
TCI CII Y II		COULT	Juoi	L

HS Headspace Analysis

Extractable Hydrocarbons - i.e everything extracted by the solvent(s)

CU Clean up - e.g. by florisil, silica gel 1D GC - Single coil gas chromatography

Total Aliphatics & Aromatics

AL Aliphatics only AR Aromatics only

+ Operator to indicate cumulative e.g. EH_CU+HS_1D_Total

Project Name: Immingham Dock

Project No: 22052220
Date Issued: 28/06/2022

Additional Information

This report refers to samples as received, and SOCOTEC UK Ltd takes no responsibility for accuracy or competence of sampling by others.

Results within this report relate only to the samples tested.

In the accreditation column of analysis report the codes are as follows:

U = UKAS accredited analysis M = MCERT accredited analysis N = Unaccredited analysis

Any units marked with ^ signify results are reported on a dry weight basis of 35 ° C.

All Air Dried and Ground Samples (ADG) are oven dried at less than 35° c.

This report shall not be reproduced except in full and with approval from the laboratory.

Opinions and interpretations given are outside the scope of our UKAS accreditation.

Any samples marked with * are not covered by our scope of UKAS accreditation. If applicable, further report notes have been added.

Any solid samples where the Major Constituents are not one of the following (Sand, Silt, Clay, Made Ground) are not one of our accredited matrix types.

Any samples marked with ‡ have had MCERTS accreditation removed for this result

Any samples marked with a tick in the deviant table is deviant for the specific reason.

Any samples reported as IS, NA, ND mean the following:

IS = Insufficient Sample to complete analysis

NA = Sample is not amenable for the required analysis

ND = Results cannot be determined

Our deviating sample report does not include deviancy information for Subcontracted analysis. Please see the report from the Subcontracted lab for information regarding any deviancies for this analysis.

End of Certificate of Analysis

Environmental Chemistry

Certificate of Analysis

Client: ABP

Project: 22052067

Quote: BEC220525409 V1.3

Project Ref: ABP

Site: Imingham Dock

Contact: Tom Jeynes

Address: Dock Office

Port of Immingham
North East Lincolnshire

DN40 2LZ

E-Mail: TJeynes@abports.co.uk

Phone: (0) 7802 910 637

No. Samples Received: 20

Date Received: 26/05/2022

Analysis Date: 22/06/2022

Date Issued: 22/06/2022

Report Type: Final Version 01

This report supercedes any versions previously issued by the laboratory

Account Manager

Anna Jasjulevica

Authorised by the Operations Manager Becky Batham

SOCOTEC UK, Ashby Road, Bretby, Burton-on-Trent, UK, DE15 0YZ

Client: ABP
Project Name: ABP
Project No: 22052067
Date Issued: 22/06/2022

Samples Analysed

- Carrier Court			
Sample Reference	Text ID	Sample Date	Sample Type
TP4 at 0.2	22052067-001	23/05/2022 09:30:00	SOLID
TP4 at 0.6	22052067-002	23/05/2022 09:30:00	SOLID
TP4 at 1.2	22052067-003	23/05/2022 09:30:00	SOLID
TP4 at 1.8	22052067-004	23/05/2022 09:30:00	SOLID
TP1 at 0.2	22052067-005	23/05/2022 11:30:00	SOLID
TP1 at 0.6	22052067-006	23/05/2022 11:30:00	SOLID
TP1 at 2.0	22052067-007	23/05/2022 11:30:00	SOLID
TP1 at 3.0	22052067-008	23/05/2022 11:30:00	SOLID
TP2 at 0.25	22052067-009	23/05/2022 12:45:00	SOLID
TP2 at 0.8	22052067-010	23/05/2022 12:45:00	SOLID
TP2 at 1.2	22052067-011	23/05/2022 12:45:00	SOLID
TP2 at 3.0	22052067-012	23/05/2022 12:45:00	SOLID
TP3 at 0.35	22052067-013	23/05/2022 13:30:00	SOLID
TP3 at 0.75	22052067-014	23/05/2022 13:30:00	SOLID
TP3 at 1.8	22052067-015	23/05/2022 13:30:00	SOLID
TP3 at 2.9	22052067-016	23/05/2022 13:30:00	SOLID
TP7 at 0.2	22052067-017	23/05/2022 15:30:00	SOLID
TP7 at 0.9	22052067-018	23/05/2022 15:30:00	SOLID
TP7 at 2.2	22052067-019	23/05/2022 15:30:00	SOLID
TP7 at 3.0	22052067-020	23/05/2022 15:30:00	SOLID

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results											
			Sa	ample ID	(001	002	003	00	04	005
			Cus	tomer ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4 a	at 1.8	TP1 at 0.2
			Sam	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Sampl	ing Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Ammoniacal Nitrogen as N	KONENS	0.01	mg/l	U	0.50				7.50		0.90
Ammoniacal Nitrogen (Exchangeable) as	AMMAR	0.5	mg/kg^	UM		<0.57	24.1	72.6		33.5	
C6-C7 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100				<0.100		<0.100
C7-C8 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100				<0.100		<0.100
>C7-C8 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.005	mg/l	N	<0.005				<0 005		<0.005
>C8-C10 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100				<0.100		<0.100
C8-C10 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.02	mg/l	N	<0.020				<0 020		<0.020
C5-C6 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100				<0.100		<0.100
C5-C7 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.005	mg/l	N	<0.005				<0 005		<0.005
Fotal GRO C5-C10 HS_1D_Total	GROHSA/BTEXHSA	0.1	mg/l	U	<0.100				<0.100		<0.100
>C6-C7 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.229				<0.243	
C7-C8 Aliphatic	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.229				<0.243	
C7-C8 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.01	mg/kg^	UM		<0.011				<0.012	
C8-C10 Aliphatic IS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.229				<0.243	
C8-C10 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.04	mg/kg^	UM		<0.046				<0.049	
C5-C6 Aliphatic IS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.229				<0.243	
C5-C7 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.01	mg/kg^	UM		<0.011				<0.012	
Total GRO C5-C10 HS_1D_Total	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.229				<0.243	
рН	PHCONDW	1	pH units	U	10.3				7.6		7.4

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	005	006	0	07	008	0	09
			Custon	ner ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2	at 0.25
			Sample	Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	ccred.							
Ammoniacal Nitrogen as N	KONENS	0.01	mg/l	U			7.70			1.50	
Ammoniacal Nitrogen (Exchangeable) as	AMMAR	0.5	mg/kg^	UM	8.50*	11.6*		140	112		16.3*
C6-C7 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N			<0.100			<0.100	
>C7-C8 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N			<0.100			<0.100	
C7-C8 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.005	mg/l	N			<0.005			<0.005	
>C8-C10 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N			<0.100			<0.100	
>C8-C10 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.02	mg/l	N			<0.020			<0.020	
C5-C6 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N			<0.100			<0.100	
C5-C7 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.005	mg/l	N			<0.005			<0.005	
Total GRO C5-C10 HS_1D_Total	GROHSA/BTEXHSA	0.1	mg/l	U			<0.100			<0.100	
>C6-C7 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0 242*			<0.305			<0.946* D
>C7-C8 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0 242*			<0.305			<0.946* D
>C7-C8 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.01	mg/kg^	UM	<0 012*			<0.015			<0.047* D
C8-C10 Aliphatic	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0 242*			<0.305			<0.946* в,D
>C8-C10 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.04	mg/kg^	UM	<0 048*			<0.061			<0.189* D
C5-C6 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0 242*			<0.305			<0.227*
C5-C7 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.01	mg/kg^	UM	<0 012*			<0.015			<0.047* D
Total GRO C5-C10 HS_1D_Total	GROHSA/BTEXHSA	0.2	mg/kg^	UM	<0 242*			<0.305			<0.227*
рН	PHCONDW	1	pH units	U			8.6			7.5	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sample	ID	010	011	0	12	013	0	14
			Customer	· ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3 a	at 0.75
			Sample Ty	/pe	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling D	ate	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Acc								
mmoniacal Nitrogen as N	KONENS	0.01	mg/l	U			5.20			0.30	
mmoniacal Nitrogen (Exchangeable) as	AMMAR	0.5	mg/kg^	UM	4.20	109		153	<0 58		2.30
C6-C7 Aliphatic S_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N			<0.100			<0.100	
C7-C8 Aliphatic S_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N			<0.100			<0.100	
C7-C8 Aromatic S_1D_AR	GROHSA/BTEXHSA	0.005	mg/l	N			<0.005			<0.005	
C8-C10 Aliphatic S_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N			<0.100			<0.100	
C8-C10 Aromatic S_1D_AR	GROHSA/BTEXHSA	0.02	mg/l	N			<0.020			<0.020	
5-C6 Aliphatic S_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N			<0.100			<0.100	
5-C7 Aromatic S_1D_AR	GROHSA/BTEXHSA	0.005	mg/l	N			<0.005			<0.005	
otal GRO C5-C10 S_1D_Total	GROHSA/BTEXHSA	0.1	mg/l	U			<0.100			<0.100	
C6-C7 Aliphatic S_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM				<0.251			<0.236
C7-C8 Aliphatic S_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM				<0.251			<0.236
C7-C8 Aromatic S_1D_AR	GROHSA/BTEXHSA	0.01	mg/kg^	UM				<0.013			<0.012
C8-C10 Aliphatic S_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM				<0.251			<0.236
C8-C10 Aromatic S_1D_AR	GROHSA/BTEXHSA	0.04	mg/kg^	UM				<0.051			<0.048
5-C6 Aliphatic _1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM				<0.251			<0.236
5-C7 Aromatic 5_1D_AR	GROHSA/BTEXHSA	0.01	mg/kg^	UM				<0.013			<0.012
otal GRO C5-C10 S_1D_Total	GROHSA/BTEXHSA	0.2	mg/kg^	UM				<0.251			<0.236
Н	PHCONDW	1	pH units	U			8.8			8.1	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sa	mple ID	015	0	16	0	17	0	18
			Cust	omer ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
			Samp	le Type	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Sampli	ng Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Ammoniacal Nitrogen as N	KONENS	0.01	mg/l	U		5.70		<0.01		0.05	
Ammoniacal Nitrogen (Exchangeable) as	AMMAR	0.5	mg/kg^	UM	15.1		67.0		5.80*		<0.63
>C6-C7 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N		<0.100 c		<0.100		<0.100	
>C7-C8 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N		<0.100 c		<0.100		<0.100	
>C7-C8 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.005	mg/l	N		<0.005 c		<0.005		<0.005	
>C8-C10 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N		<0.100 c		<0.100		<0.100	
>C8-C10 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.02	mg/l	N		<0.020 c		<0.020		<0.020	
C5-C6 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N		<0.100 c		<0.100		<0.100	
C5-C7 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.005	mg/l	N		<0.005 c		<0.005		<0.005	
Total GRO C5-C10 HS_1D_Total	GROHSA/BTEXHSA	0.1	mg/l	U		<0.100 c		<0.100		<0.100	
>C6-C7 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM			<0.275		<0.220*		<0.253
>C7-C8 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM			<0.275		<0.220*		<0.253
>C7-C8 Aromatic Hs_1D_AR	GROHSA/BTEXHSA	0.01	mg/kg^	UM			<0.014		<0.011*		<0.013
>C8-C10 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM			<0.275		<0.220*		<0.253
>C8-C10 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.04	mg/kg^	UM			<0.056		<0.044*		<0.051
C5-C6 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM			<0.275		<0.220*		<0.253
C5-C7 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.01	mg/kg^	UM			<0.014		<0.011*		<0.013
Total GRO C5-C10 HS_1D_Total	GROHSA/BTEXHSA	0.2	mg/kg^	UM			<0.275		<0.220*		<0.253
рН	PHCONDW	1	pH units	U		8.6		8.1		8.2	

Project Name: Imingham Dock

Project No: 22052067

Date Issued: 22/06/2022

Analysis Results							
			Sa	mple ID	0	19	020
			Cust	omer ID	TP7	at 2.2	TP7 at 3.0
			Samp	ole Type	LPL	SOLID	SOLID
			Sampli	ng Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
Ammoniacal Nitrogen as N	KONENS	0.01	mg/l	U	0.20		
Ammoniacal Nitrogen (Exchangeable) as N	AMMAR	0.5	mg/kg^	UM		3.40	1.40
>C6-C7 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100		
>C7-C8 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100		
>C7-C8 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.005	mg/l	N	<0.005		
>C8-C10 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100		
>C8-C10 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.02	mg/l	N	<0.020		
C5-C6 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100		
C5-C7 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.005	mg/l	N	<0.005		
Total GRO C5-C10 HS_1D_Total	GROHSA/BTEXHSA	0.1	mg/l	U	<0.100		
>C6-C7 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.262	
>C7-C8 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	ИМ		<0.262	
>C7-C8 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.01	mg/kg^	UM		<0.013	
>C8-C10 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.262	
>C8-C10 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.04	mg/kg^	UM		<0.052	
C5-C6 Aliphatic HS_1D_AL	GROHSA/BTEXHSA	0.2	mg/kg^	ИМ		<0.262	
C5-C7 Aromatic HS_1D_AR	GROHSA/BTEXHSA	0.01	mg/kg^	UM		<0.013	
Total GRO C5-C10 HS_1D_Total	GROHSA/BTEXHSA	0.2	mg/kg^	UM		<0.262	
pH	PHCONDW	1	pH units	U	8.1		

Page 7 of 120

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results											
			Sai	mple ID		001	002	003	0	04	005
			Custo	omer ID	TP4	1 at 0.2	TP4 at 0.6	TP4 at 1.2	TP4	at 1.8	TP1 at 0.2
			Samp	le Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Samplin	ng Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
pH (2.5:1 extraction)	PHSOIL	1	pH units	UM		7.7	7.6	7.9		7.7	
Chloride as CI	KONENS	1	mg/l	U	38				17		26
Chromium (VI) as Cr	KONENS	0.003	mg/l	U	0.104				<0 003		<0.003
Chromium (VI) as Cr	KONENS	0.1	mg/kg^	N		<0.1	<0.1	<0.1		<0.1	
Free Cyanide	SFAPI	0.02	mg/l	U	<0.02				<0.02		<0.02
Free Cyanide	SFAPI	0.5	mg/kg^	UM		<0.6	<0.6	<0.6		<0.6	
Phenol Index	SFAPI	0.5	mg/kg^	U		0.8	0.9	1.0		0.9	
Thiocyanate	SFAPI	0.2	mg/l	U	<0.20				<0 20		<0.20
Thiocyanate	SFAPI	2	mg/kg^	UM		<2.3	<2.3	<2.5		<2.4	
Total Cyanide	SFAPI	0.02	mg/l	U	<0.02				<0.02		<0.02
Total Cyanide	SFAPI	0.5	mg/kg^	UM		<0.6	<0.6	<0.6		<0.6	
Fraction of Organic Carbon	WSLM59	0.0002	Dry Weight Corrected [^]	U		0.0434	0.0229	0.0304		0.0204	
Soil Organic Matter	WSLM59	0.04	% m/m^	U		7.48	3.95	5.24		3.53	
eached Organic Carbon	WSLM13	0.2	mg/l	U	18				8.6		4.2
Arsenic as As	ICPMSS	0.3	mg/kg^	UM		15.1	9.8	10.1		10.3	
Cadmium as Cd	ICPMSS	0.2	mg/kg^	UM		0.4	1.3	1.0		0.8	
Copper as Cu	ICPMSS	1.6	mg/kg^	UM		27.7	48.2	42.5		45.6	
Lead as Pb	ICPMSS	0.7	mg/kg^	UM		26.4	89.0	36.1		60.6	
Mercury as Hg	ICPMSS	0.5	mg/kg^	UM		<0.5	0.6	<0.5		<0.5	
			1					1			

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	005	006	0	07	008	C	009
			Custon	ner ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2	at 0.25
			Sample	Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	ccred.							
pH (2.5:1 extraction)	PHSOIL	1	pH units	UM	5.9*	5.1*		8.5	8.5		6.3*
Chloride as Cl	KONENS	1	mg/l	U			228			14	
Chromium (VI) as Cr	KONENS	0.003	mg/l	U			<0.003			<0.003	
Chromium (VI) as Cr	KONENS	0.1	mg/kg^	N	<0.1	<0.1		<1.0 p	<5.0 D		<0.1
Free Cyanide	SFAPI	0.02	mg/l	U			0.02			<0.02	
Free Cyanide	SFAPI	0.5	mg/kg^	UM	<0.6*	<0.6*		<0.8	<0.7		<0.6*
Phenol Index	SFAPI	0.5	mg/kg^	U	0.8*	0.9*		<0.8	0.8		<0.6*
Thiocyanate	SFAPI	0.2	mg/l	U			<0.20			<0.20	
Thiocyanate	SFAPI	2	mg/kg^	UM	<2.4*	<2.4*		<3.1	<2.7		<2.3*
Total Cyanide	SFAPI	0.02	mg/l	U			0.02			<0.02	
Total Cyanide	SFAPI	0.5	mg/kg^	UM	<0.6*	<0.6*		<0.8	<0.7		<0.6*
Fraction of Organic Carbon	WSLM59	0.0002	Dry Weight Corrected^	U	>0.250* E	>0.250* E		0.0188	0.0174		>0.250* E
Soil Organic Matter	WSLM59	0.04	% m/m^	U	>43.0* E	>43.0* E		3.24	3.00		>43.0* E
Leached Organic Carbon	WSLM13	0.2	mg/l	U			47			5.5	
Arsenic as As	ICPMSS	0.3	mg/kg^	UM	71.8*	273.7*		25.9	13.1		179.8*
Cadmium as Cd	ICPMSS	0.2	mg/kg^	UM	0.3*	<0.2*		0.2	<0.2		1.5*
Copper as Cu	ICPMSS	1.6	mg/kg^	UM	104.2*	83.9*		20.4	17.3		550.1*
Lead as Pb	ICPMSS	0.7	mg/kg^	UM	30.6*	56.0*		21.5	23.7		220.6*
Mercury as Hg	ICPMSS	0.5	mg/kg^	UM	<0.5*	1.1*		<0.5	<0.5		<0.5*

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Samı	ple ID	010	011	0	12	013	0	14
			Custon	ner ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3 a	at 0.75
			Sample	Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/202
Analysis	Method Code	MDL	Units A	ccred.							
pH (2.5:1 extraction)	PHSOIL	1	pH units	UM	7.9	8.4		8.4	8.8		8.4
Chloride as Cl	KONENS	1	mg/l	U			159			37	
Chromium (VI) as Cr	KONENS	0.003	mg/l	U			<0.003			<0.003	
Chromium (VI) as Cr	KONENS	0.1	mg/kg^	N	<0.1	<1.0 p		<1.0 p	<0.1		<0.1
Free Cyanide	SFAPI	0.02	mg/l	U			0.03			<0.02	
Free Cyanide	SFAPI	0.5	mg/kg^	UM	<0.6	<0.7		<0.6	<0.6		<0.6
Phenol Index	SFAPI	0.5	mg/kg^	U	<0.6	<0.7		0.8	1.0		1.2
Thiocyanate	SFAPI	0.2	mg/l	U			<0.20			<0.20	
Thiocyanate	SFAPI	2	mg/kg^	UM	<2.4	<2.8		<2.5	<23		<2.4
Total Cyanide	SFAPI	0.02	mg/l	U			0.02			<0.02	
Total Cyanide	SFAPI	0.5	mg/kg^	UM	<0.6	<0.7		<0.6	<0.6		<0.6
Fraction of Organic Carbon	WSLM59	0.0002	Dry Weight Corrected^	U	>0.250* E	0.0198		0.0083	0.0063		0.0056
Soil Organic Matter	WSLM59	0.04	% m/m^	U	>43.0* E	3.42		1.42	1.08		0.97
eached Organic Carbon	WSLM13	0.2	mg/l	U			24			1.8	
Arsenic as As	ICPMSS	0.3	mg/kg^	UM	56.8	13.7		16.1	10.9		10.2
Cadmium as Cd	ICPMSS	0.2	mg/kg^	UM	<0.2	0.3		<0.2	0.3		0.3
Copper as Cu	ICPMSS	1.6	mg/kg^	UM	42.4	18.4		20.5	17.5		19.2
ead as Pb	ICPMSS	0.7	mg/kg^	UM	28.2	16.5		19.9	13.1		12.6
Mercury as Hg	ICPMSS	0.5	mg/kg^	UM	<0.5	<0.5		<0.5	<0.5		<0.5

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

		Samp	ple ID	015		16		17		18
		Custom	ner ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
		Sample	Туре	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
		Sampling	Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Method Code	MDL	Units A	ccred.							
PHSOIL	1	pH units	UM	8.6		8.5		8.3*		8.3
KONENS	1	mg/l	U		313		23		3	
KONENS	0.003	mg/l	U		<0.003		<0.003		0.010	
KONENS	0.1	mg/kg^	N	<0.1		0.2		<0.1		<0.1
SFAPI	0.02	mg/l	U		0.03		0.02		0.03	
SFAPI	0.5	mg/kg^	UM	<0.6		<0.7		<0.6*		<0.6
SFAPI	0.5	mg/kg^	U	0.7		1.3		1.4*		3.0
SFAPI	0.2	mg/l	U		<0.20		<0.20		<0.20	
SFAPI	2	mg/kg^	UM	<2.3		<2.8		<2.2*		<2.5
SFAPI	0.02	mg/l	U		<0.02		<0.02		<0.02	
SFAPI	0.5	mg/kg^	UM	<0.6		<0.7		<0.6*		<0.6
WSLM59	0.0002	Dry Weight Corrected^	U	0.0076		0.0203		>0.250* E		0.0215
WSLM59	0.04	% m/m^	U	1.31		3.50		>43.0* E		3.71
WSLM13	0.2	mg/l	U		28		4.2		4.4	
ICPMSS	0.3	mg/kg^	UM	9.6		13.4		28.1*		17.2
ICPMSS	0.2	mg/kg^	UM	0.3		0.3		0.4*		0.3
ICPMSS	1.6	mg/kg^	UM	17.6		17.0		71.7*		21.2
ICPMSS	0.7	mg/kg^	UM	12.3		18.5		35.7*		69.0
ICPMSS	0.5	mg/kg^	UM	<0.5		<0.5		<0.5*		<0.5
	KONENS KONENS KONENS KONENS SFAPI SFAPI SFAPI SFAPI SFAPI WSLM59 WSLM59 WSLM13 ICPMSS ICPMSS	PHSOIL 1 KONENS 1 KONENS 0.003 KONENS 0.1 SFAPI 0.02 SFAPI 0.5 SFAPI 0.5 SFAPI 0.2 SFAPI 0.02 SFAPI 0.02 SFAPI 0.02 WSLM59 0.0002 WSLM59 0.04 WSLM13 0.2 ICPMSS 0.3 ICPMSS 0.2 ICPMSS 1.6 ICPMSS 0.7	Nethod Code	PHSOIL 1 pH units UM KONENS 1 mg/l U KONENS 0.003 mg/l U KONENS 0.1 mg/kg^ N SFAPI 0.02 mg/l U SFAPI 0.5 mg/kg^ UM SFAPI 0.5 mg/kg^ U SFAPI 2 mg/kg^ UM SFAPI 0.02 mg/l U SFAPI 0.5 mg/kg^ UM WSLM59 0.0002 Dry Weight Corrected^ U WSLM59 0.04 % m/m^ U WSLM13 0.2 mg/l U ICPMSS 0.3 mg/kg^ UM ICPMSS 0.2 mg/kg^ UM ICPMSS 0.7 mg/kg^ UM	Nethod Code MDL Units Accred.	Sample Type SOLID LPL	Nethod Code	Method Code	Nethod Code	Native Code Native Code

Project Name: Imingham Dock

Project No: 22052067

Date Issued: 22/06/2022

			Sam	ple ID	0	19	020
			Custon	ner ID	TP7	at 2.2	TP7 at 3.0
			Sample	Туре	LPL	SOLID	SOLID
			Sampling	Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	ccred.			
pH (2.5:1 extraction)	PHSOIL	1	pH units	UM		8.4	8.5
Chloride as Cl	KONENS	1	mg/l	U	88		
Chromium (VI) as Cr	KONENS	0.003	mg/l	U	<0.003		
Chromium (VI) as Cr	KONENS	0.1	mg/kg^	N		<0.1	<0.1
Free Cyanide	SFAPI	0.02	mg/l	U	0.03		
Free Cyanide	SFAPI	0.5	mg/kg^	UM		<0.7	<0.7
Phenol Index	SFAPI	0.5	mg/kg^	U		2.8	3.0
Thiocyanate	SFAPI	0.2	mg/l	U	<0.20		
Thiocyanate	SFAPI	2	mg/kg^	UM		<2.6	<2.7
Total Cyanide	SFAPI	0.02	mg/l	U	<0.02		
Total Cyanide	SFAPI	0.5	mg/kg^	UM		<0.7	<0.7
Fraction of Organic Carbon	WSLM59	0.0002	Dry Weight Corrected [^]	U		0.0126	0.0130
Soil Organic Matter	WSLM59	0.04	% m/m^	U		2.17	2.25
Leached Organic Carbon	WSLM13	0.2	mg/l	U	4.7		
Arsenic as As	ICPMSS	0.3	mg/kg^	UM		13.7	75.0
Cadmium as Cd	ICPMSS	0.2	mg/kg^	UM		<0.2	1.0
Copper as Cu	ICPMSS	1.6	mg/kg^	UM		15.8	81.2
Lead as Pb	ICPMSS	0.7	mg/kg^	UM		25.9	201.6
Mercury as Hg	ICPMSS	0.5	mg/kg^	UM		<0.5	<0.5

Page 12 of 120

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results											
			Sar	nple ID	0	01	002	003	00	04	005
			Custo	mer ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4 :	at 1.8	TP1 at 0.2
			Samp	le Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Samplin	ng Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Nickel as Ni	ICPMSS	2	mg/kg^	UM		20.4	22.9	21.3		24.0	
Selenium as Se	ICPMSS	0.5	mg/kg^	UM		<0.5	<0.5	<0.5		<0.5	
Total Chromium as Cr	ICPMSS	1.2	mg/kg^	UM		22.5	50.9	40.2		46.8	
Zinc as Zn	ICPMSS	16	mg/kg^	UM		72.7	178.3	157.6		221.8	
Iron as Fe	ICPSOIL	36	mg/kg^	UM		21100	22200	20600		28400	
Boron as B	ICPBOR	0.5	mg/kg^	UM		2.4	2.3	2.0		3.4	
Arsenic as As	ICPMSW (Dissolved)	0.001	mg/l	U	0.009				0.005		<0.001
Cadmium as Cd	ICPMSW (Dissolved)	0.00002	mg/l	U	<0.00002				<0 00002		<0.00002
Total Chromium as Cr	ICPMSW (Dissolved)	0.001	mg/l	U	0.138				<0 001		<0.001
Copper as Cu	ICPMSW (Dissolved)	0.001	mg/l	U	0.053				<0 001		<0.001
Lead as Pb	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001				<0 001		<0.001
Mercury as Hg	ICPMSW (Dissolved)	0.00003	mg/l	U	<0.00003				<0 00003		<0.00003
Nickel as Ni	ICPMSW (Dissolved)	0.001	mg/l	U	0.007				0.002		0.009
Selenium as Se	ICPMSW (Dissolved)	0.001	mg/l	U	0.003				0.001		0.004
Zinc as Zn	ICPMSW (Dissolved)	0.002	mg/l	U	<0.002				0.003		<0.002
Boron as B	ICPWATVAR (Dissolved)	0.01	mg/l	U	0.21				0.68		0.22
Calcium as Ca	ICPWATVAR (Dissolved)	1	mg/l	U	663				466		237
Iron as Fe	ICPWATVAR (Dissolved)	0.01	mg/l	U	<0.01				0.15		<0.01
Benzene HS_1D_AR	BTEXHSA	5	μg/l	N	<5				<5		<5

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	005	006	0	07	800	0	09
			Custon	ner ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2 a	at 0.25
			Sample	Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	ccred.							
Nickel as Ni	ICPMSS	2	mg/kg^	UM	33.5*	9.2*		41.3	38.8		179.0*
Selenium as Se	ICPMSS	0.5	mg/kg^	UM	1.0*	6.3*		<0.5	<0.5		4.4*
Total Chromium as Cr	ICPMSS	1.2	mg/kg^	UM	18.1*	5.8*		40.9	43.0		111.0*
Zinc as Zn	ICPMSS	16	mg/kg^	UM	65.1*	29.5*		94.4	82.5		354.2*
Iron as Fe	ICPSOIL	36	mg/kg^	UM	43500*	64700*		40000	35600		306000*
Boron as B	ICPBOR	0.5	mg/kg^	UM	1.6*	2.0*		<0.5	<0.5		2.5*
Arsenic as As	ICPMSW (Dissolved)	0.001	mg/l	U			0.018			0.009	
Cadmium as Cd	ICPMSW (Dissolved)	0.00002	mg/l	U			<0.00002			<0.00002	
Total Chromium as Cr	ICPMSW (Dissolved)	0.001	mg/l	U			0.002			<0.001	
Copper as Cu	ICPMSW (Dissolved)	0.001	mg/l	U			<0.001			0.001	
Lead as Pb	ICPMSW (Dissolved)	0.001	mg/l	U			<0.001			<0.001	
Mercury as Hg	ICPMSW (Dissolved)	0.00003	mg/l	U			<0.00003			<0.00003	
Nickel as Ni	ICPMSW (Dissolved)	0.001	mg/l	U			0.003			0.007	
Selenium as Se	ICPMSW (Dissolved)	0.001	mg/l	U			0.001			0.001	
Zinc as Zn	ICPMSW (Dissolved)	0.002	mg/l	U			0.003			0.005	
Boron as B	ICPWATVAR (Dissolved)	0.01	mg/l	U			1.11			0.48	
Calcium as Ca	ICPWATVAR (Dissolved)	1	mg/l	U			8			153	
ron as Fe	ICPWATVAR (Dissolved)	0.01	mg/l	U			0.15			<0.01	
Benzene HS_1D_AR	BTEXHSA	5	μg/l	N			<5			<5	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	010	011	012		013	014		
			Custon	ner ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3 a	at 0.75	
			Sample	Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID	
			Sampling	Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	
Analysis	Method Code	MDL	Units A	ccred.								
Nickel as Ni	ICPMSS	2	mg/kg^	ИМ	23.5	34.0		41.1	31.2		33.2	
Selenium as Se	ICPMSS	0.5	mg/kg^	UM	0.6	<0.5		<0.5	<0.5		<0.5	
Fotal Chromium as Cr	ICPMSS	1.2	mg/kg^	UM	13.7	32.4		41.2	27.2		28.5	
Zinc as Zn	ICPMSS	16	mg/kg^	UM	50.6	92.4		90.1	62.5		54.8	
Iron as Fe	ICPSOIL	36	mg/kg^	UM	18700	31100		40200	24000		26200	
Boron as B	ICPBOR	0.5	mg/kg^	UM	1.7	<0.5		<0.5	0.9		0.8	
Arsenic as As	ICPMSW (Dissolved)	0.001	mg/l	U			0.002			<0.001		
Cadmium as Cd	ICPMSW (Dissolved)	0.00002	mg/l	U			<0.00002			<0.00002		
Total Chromium as Cr	ICPMSW (Dissolved)	0.001	mg/l	U			0.001			<0.001		
Copper as Cu	ICPMSW (Dissolved)	0.001	mg/l	U			0.002			<0.001		
Lead as Pb	ICPMSW (Dissolved)	0.001	mg/l	U			<0.001			<0.001		
Mercury as Hg	ICPMSW (Dissolved)	0.00003	mg/l	U			<0.00003			<0.00003		
Nickel as Ni	ICPMSW (Dissolved)	0.001	mg/l	U			0.007			<0.001		
Selenium as Se	ICPMSW (Dissolved)	0.001	mg/l	U			0.002			<0.001		
Zinc as Zn	ICPMSW (Dissolved)	0.002	mg/l	U			0.002			0.002		
Boron as B	ICPWATVAR (Dissolved)	0.01	mg/l	U			0.80			0.05		
Calcium as Ca	ICPWATVAR (Dissolved)	1	mg/l	U			2			69		
ron as Fe	ICPWATVAR (Dissolved)	0.01	mg/l	U			0.32			<0.01		
Benzene	BTEXHSA	5	μg/l	N			<5			<5		

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			San	nple ID	015		16		17		18
			Custo	mer ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
			Sampl	е Туре	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Samplin	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Nickel as Ni	ICPMSS	2	mg/kg^	UM	30.2		32.5		28.8*		33.0
Selenium as Se	ICPMSS	0.5	mg/kg^	UM	<0.5		<0.5		0.8*		<0.5
Total Chromium as Cr	ICPMSS	1.2	mg/kg^	UM	24.0		34.0		16.6*		36.2
Zinc as Zn	ICPMSS	16	mg/kg^	UM	65.9		81.0		57.4*		104.5
Iron as Fe	ICPSOIL	36	mg/kg^	UM	22300		29900		36800*		31500
Boron as B	ICPBOR	0.5	mg/kg^	UM	1.4		1.8		1.2*		1.9
Arsenic as As	ICPMSW (Dissolved)	0.001	mg/l	U		0.017		0.008		<0.001	
Cadmium as Cd	ICPMSW (Dissolved)	0.00002	mg/l	U		<0.00002		<0.00002		<0.00002	
Total Chromium as Cr	ICPMSW (Dissolved)	0.001	mg/l	U		0.002		<0.001		0.002	
Copper as Cu	ICPMSW (Dissolved)	0.001	mg/l	U		<0.001		0.002		0.002	
Lead as Pb	ICPMSW (Dissolved)	0.001	mg/l	U		<0.001		<0.001		<0.001	
Mercury as Hg	ICPMSW (Dissolved)	0.00003	mg/l	U		<0.00003		<0.00003		<0.00003	
Nickel as Ni	ICPMSW (Dissolved)	0.001	mg/l	U		0.002		0.001		0.001	
Selenium as Se	ICPMSW (Dissolved)	0.001	mg/l	U		<0.001		0.002		<0.001	
Zinc as Zn	ICPMSW (Dissolved)	0.002	mg/l	U		0.003		<0.002		0.003	
Boron as B	ICPWATVAR (Dissolved)	0.01	mg/l	U		1.24		0.14		0.18	
Calcium as Ca	ICPWATVAR (Dissolved)	1	mg/l	U		12		77		56	
ron as Fe	ICPWATVAR (Dissolved)	0.01	mg/l	U		0.05		<0.01		0.06	
Benzene HS_1D_AR	BTEXHSA	5	μg/l	N		<5 c		<5		<5	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sa	ample ID	0	19	020
			Cust	omer ID	TP7	at 2.2	TP7 at 3.0
			Sam	ple Type	LPL	SOLID	SOLID
			Sampl	ing Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
Nickel as Ni	ICPMSS	2	mg/kg^	UM		33.8	175.5
Selenium as Se	ICPMSS	0.5	mg/kg^	UM		<0.5	2.6
Total Chromium as Cr	ICPMSS	1.2	mg/kg^	UM		34.0	173.5
Zinc as Zn	ICPMSS	16	mg/kg^	UM		79.1	424.9
Iron as Fe	ICPSOIL	36	mg/kg^	UM		32100	201000
Boron as B	ICPBOR	0.5	mg/kg^	UM		2.2	1.5
Arsenic as As	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001		
Cadmium as Cd	ICPMSW (Dissolved)	0.00002	mg/l	U	<0.00002		
Total Chromium as Cr	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001		
Copper as Cu	ICPMSW (Dissolved)	0.001	mg/l	U	0.002		
Lead as Pb	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001		
Mercury as Hg	ICPMSW (Dissolved)	0.00003	mg/l	U	<0.00003		
Nickel as Ni	ICPMSW (Dissolved)	0.001	mg/l	U	0.002		
Selenium as Se	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001		
Zinc as Zn	ICPMSW (Dissolved)	0.002	mg/l	U	0.002		
Boron as B	ICPWATVAR (Dissolved)	0.01	mg/l	U	0.61		
Calcium as Ca	ICPWATVAR (Dissolved)	1	mg/l	U	34		
Iron as Fe	ICPWATVAR (Dissolved)	0.01	mg/l	U	<0.01		
Benzene HS_1D_AR	BTEXHSA	5	μg/l	N	<5		

Page 17 of 120

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	0	01	7P4 at 0.6	003	0	005	
			Custor	mer ID	TP4	at 0.2		TP4 at 1.2	TP4	at 1.8	TP1 at 0.2
			Sample	туре	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Sampling	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	ccred.							
Ethylbenzene IS_1D_AR	BTEXHSA	5	μg/l	N	<5				<5		<5
n/p-Xylene IS_1D_AR	BTEXHSA	10	µg/l	N	<10				<10		<10
o-Xylene IS_1D_AR	BTEXHSA	5	µg/l	N	<5				<5		<5
Foluene IS_1D_AR	BTEXHSA	5	μg/l	N	<5				<5		<5
Benzene IS_1D_AR	BTEXHSA	10	μg/kg^	UM		<11				<12	
Ethylbenzene IS_1D_AR	BTEXHSA	10	μg/kg^	UM		<11				<12	
n/p-Xylene IS_1D_AR	BTEXHSA	20	μg/kg^	UM		<23				<24	
o-Xylene IS_1D_AR	BTEXHSA	10	μg/kg^	UM		<11				<12	
Toluene IS_1D_AR	BTEXHSA	10	µg/kg^	UM		<11				<12	
•C6-C10 IS_1D_Total	GROHSA	0.1	mg/l	N	<0.100				<0.100		<0.100
Acenaphthene	PAHMSUS	0.08	mg/kg^	UM		<0.09	0.14	0.23		0.14	
Acenaphthylene	PAHMSUS	0.08	mg/kg^	U		<0.09	<0.09	<0.10		<0.10	
Anthracene	PAHMSUS	0.08	mg/kg^	U		0.32	0.45	0.32		0.48	
Benzo[a]anthracene	PAHMSUS	0.08	mg/kg^	UM		0.67	0.79	0.57		0.50	
Benzo[a]pyrene	PAHMSUS	0.08	mg/kg^	UM		0.77	0.74	0.51		0.65	
Benzo[b]fluoranthene	PAHMSUS	0.08	mg/kg^	UM		0.85	0.76	0.53		0.68	
Benzo[g,h,i]perylene	PAHMSUS	0.08	mg/kg^	UM		0.39	0.46	0.28		0.29	
enzo[k]fluoranthene	PAHMSUS	0.08	mg/kg^	UM		0.47	0.34	0.24		0.40	
Chrysene	PAHMSUS	0.08	mg/kg^	UM		0.81	0.74	0.55		0.70	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results											
			Sa	mple ID	005	006	0	007	008	0	09
			Cust	omer ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2 a	at 0.25
			Samp	ole Type	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampli	ng Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Ethylbenzene HS_1D_AR	BTEXHSA	5	μg/l	N			<5			<5	
m/p-Xylene HS_1D_AR	BTEXHSA	10	µg/l	N			<10			<10	
o-Xylene HS_1D_AR	BTEXHSA	5	μg/l	N			<5			<5	
Toluene HS_1D_AR	BTEXHSA	5	μg/l	N			<5			<5	
Benzene HS_1D_AR	BTEXHSA	10	μg/kg^	UM	<12*			<15			<47* D
Ethylbenzene HS_1D_AR	BTEXHSA	10	μg/kg^	UM	<12*			<15			<47* D
m/p-Xylene HS_1D_AR	BTEXHSA	20	μg/kg^	UM	<24*			<31			<95* D
o-Xylene HS_1D_AR	BTEXHSA	10	μg/kg^	UM	<12*			<15			<47* D
Toluene HS_1D_AR	BTEXHSA	10	μg/kg^	UM	<12*			<15			<47* D
>C6-C10 HS_1D_Total	GROHSA	0.1	mg/l	N			<0.100			<0.100	
Acenaphthene	PAHMSUS	0.08	mg/kg^	UM	0.14*	0.10*		<0.12	<0.11		<0.09*
Acenaphthylene	PAHMSUS	0.08	mg/kg^	U	0.14*	<0.10*		<0.12	<0.11		<0.09*
Anthracene	PAHMSUS	0.08	mg/kg^	U	0.27*	0.25*		<0.12	<0.11		0.64*
Benzo[a]anthracene	PAHMSUS	0.08	mg/kg^	UM	0.15*	0.42*		<0.12	<0.11		0.24*
Benzo[a]pyrene	PAHMSUS	0.08	mg/kg^	UM	0.15*	0.28*		<0.12	<0.11		0.20*
Benzo[b]fluoranthene	PAHMSUS	0.08	mg/kg^	UM	0.25*	0.51*		<0.12	<0.11		0.34*
Benzo[g,h,i]perylene	PAHMSUS	0.08	mg/kg^	UM	0.12*	0.45*		<0.12	<0.11		0.14*
Benzo[k]fluoranthene	PAHMSUS	0.08	mg/kg^	UM	0.11*	0.13*		<0.12	<0.11		0.15*
Chrysene	PAHMSUS	0.08	mg/kg^	UM	0.30*	0.67*		<0.12	<0.11		0.40*
										I	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sample ID		010	011	n	12	013	014		
			Custom	H	TP2 at 0.8	TP2 at 1.2		at 3.0	TP3 at 0.35		at 0.75	
			Sample		SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID	
			Sampling	-	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	
Analysis	Method Code	MDL		cred.	23/03/2022	23/03/2022	23/03/2022	23/03/2022	23/03/2022	25/05/2022	25/05/2022	
Ethylbenzene HS_1D_AR	BTEXHSA	5	μg/l	N			<5			<5		
m/p-Xylene HS_1D_AR	BTEXHSA	10	µg/l	N			<10			<10		
o-Xylene HS_1D_AR	BTEXHSA	5	μg/l	N			<5			<5		
Toluene HS_1D_AR	BTEXHSA	5	μg/l	N			<5			<5		
Benzene HS_1D_AR	BTEXHSA	10	μg/kg^	UM				<13			<12	
Ethylbenzene HS_1D_AR	BTEXHSA	10	µg/kg^	UM				<13			<12	
m/p-Xylene HS_1D_AR	BTEXHSA	20	μg/kg^	UM				<25			<24	
o-Xylene HS_1D_AR	BTEXHSA	10	µg/kg^	UM				<13			<12	
Toluene HS_1D_AR	BTEXHSA	10	µg/kg^	UM				<13			<12	
>C6-C10 HS_1D_Total	GROHSA	0.1	mg/l	N			<0.100			<0.100		
Acenaphthene	PAHMSUS	0.08	mg/kg^	UM	<0.10	<0.11		<0.10	<0.09		<0.09	
Acenaphthylene	PAHMSUS	0.08	mg/kg^	U	<0.10	<0.11		<0.10	<0.09		<0.09	
Anthracene	PAHMSUS	0.08	mg/kg^	U	0.32	<0.11		<0.10	<0.09		<0.09	
Benzo[a]anthracene	PAHMSUS	0.08	mg/kg^	UM	0.48	<0.11		<0.10	0.10		<0.09	
Benzo[a]pyrene	PAHMSUS	0.08	mg/kg^	UM	0.33	<0.11		<0.10	0.09		<0.09	
Benzo[b]fluoranthene	PAHMSUS	0.08	mg/kg^	UM	0.57	<0.11		<0.10	0.12		<0.09	
Benzo[g,h,i]perylene	PAHMSUS	0.08	mg/kg^	UM	0.35	<0.11		<0.10	<0.09		<0.09	
Benzo[k]fluoranthene	PAHMSUS	0.08	mg/kg^	UM	0.18	<0.11		<0.10	<0.09		<0.09	
Chrysene	PAHMSUS	0.08	mg/kg^	UM	0.53	<0.11		<0.10	0.12		<0.09	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			San	nple ID	015	0	16	0	17	0	18
			Custo	mer ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
			Sampl	е Туре	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Samplin	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Ethylbenzene HS_1D_AR	BTEXHSA	5	µg/l	N		<5 c		<5		<5	
m/p-Xylene HS_1D_AR	BTEXHSA	10	μg/l	N		<10 c		<10		<10	
o-Xylene HS_1D_AR	BTEXHSA	5	μg/l	N		<5 c		<5		<5	
Toluene HS_1D_AR	BTEXHSA	5	μg/l	N		<5 c		<5		<5	
Benzene HS_1D_AR	BTEXHSA	10	μg/kg^	UM			<14		<11*		<13
Ethylbenzene HS_1D_AR	BTEXHSA	10	μg/kg^	UM			<14		<11*		<13
m/p-Xylene HS_1D_AR	BTEXHSA	20	μg/kg^	UM			<28		<22*		<25
o-Xylene HS_1D_AR	BTEXHSA	10	μg/kg^	UM			<14		<11*		<13
Toluene HS_1D_AR	BTEXHSA	10	μg/kg^	UM			<14		<11*		<13
>C6-C10 HS_1D_Total	GROHSA	0.1	mg/l	N		<0.100 c		<0.100		<0.100	
Acenaphthene	PAHMSUS	0.08	mg/kg^	UM	<0.09		<0.11		0.16*		<0.10
Acenaphthylene	PAHMSUS	0.08	mg/kg^	U	<0.09		<0.11		0.23*		<0.10
Anthracene	PAHMSUS	0.08	mg/kg^	U	<0.09		<0.11		1.05*		<0.10
Benzo[a]anthracene	PAHMSUS	0.08	mg/kg^	UM	<0.09		<0.11		0.76*		<0.10
Benzo[a]pyrene	PAHMSUS	0.08	mg/kg^	UM	<0.09		<0.11		0.72*		<0.10
Benzo[b]fluoranthene	PAHMSUS	0.08	mg/kg^	UM	<0.09		<0.11		1.27*		0.10
Benzo[g,h,i]perylene	PAHMSUS	0.08	mg/kg^	UM	<0.09		<0.11		0.29*		<0.10
Benzo[k]fluoranthene	PAHMSUS	0.08	mg/kg^	UM	<0.09		<0.11		0.55*		<0.10
Chrysene	PAHMSUS	0.08	mg/kg^	UM	<0.09		<0.11		0.98*		0.12

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sa	mple ID	0	19	020
			Cust	omer ID	TP7	at 2.2	TP7 at 3.0
			Samp	ole Type	LPL	SOLID	SOLID
			Sampli	ng Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
Ethylbenzene HS_1D_AR	BTEXHSA	5	μg/l	N	<5		
m/p-Xylene HS_1D_AR	BTEXHSA	10	μg/l	N	<10		
o-Xylene HS_1D_AR	BTEXHSA	5	μg/l	N	<5		
Toluene HS_1D_AR	BTEXHSA	5	μg/l	N	<5		
Benzene HS_1D_AR	BTEXHSA	10	μg/kg^	UM		<13	
Ethylbenzene HS_1D_AR	BTEXHSA	10	μg/kg^	UM		<13	
m/p-Xylene HS_1D_AR	BTEXHSA	20	μg/kg^	UM		<26	
o-Xylene HS_1D_AR	BTEXHSA	10	μg/kg^	UM		<13	
Toluene HS_1D_AR	BTEXHSA	10	μg/kg^	UM		<13	
>C6-C10 HS_1D_Total	GROHSA	0.1	mg/l	N	<0.100		
Acenaphthene	PAHMSUS	0.08	mg/kg^	UM		<0.11	<0.11
Acenaphthylene	PAHMSUS	0.08	mg/kg^	U		<0.11	<0.11
Anthracene	PAHMSUS	0.08	mg/kg^	U		<0.11	<0.11
Benzo[a]anthracene	PAHMSUS	0.08	mg/kg^	UM		<0.11	<0.11
Benzo[a]pyrene	PAHMSUS	0.08	mg/kg^	UM		<0.11	<0.11
Benzo[b]fluoranthene	PAHMSUS	0.08	mg/kg^	UM		<0.11	<0.11
Benzo[g,h,i]perylene	PAHMSUS	0.08	mg/kg^	UM		<0.11	<0.11
Benzo[k]fluoranthene	PAHMSUS	0.08	mg/kg^	UM		<0.11	<0.11
Chrysene	PAHMSUS	0.08	mg/kg^	UM		<0.11	<0.11

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sa	mple ID	C	001	002	003	00		005
			Cust	omer ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4 a	at 1.8	TP1 at 0.2
			Samp	ole Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Sampli	ng Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Dibenzo[a,h]anthracene	PAHMSUS	0.08	mg/kg^	UM		0.11	0.16	0.11		<0.10	
Fluoranthene	PAHMSUS	0.08	mg/kg^	UM		1.50	2.00	1.43		1.45	
Fluorene	PAHMSUS	0.08	mg/kg^	UM		<0.09	0.21	0.21		0.17	
ndeno[1,2,3-cd]pyrene	PAHMSUS	0.08	mg/kg^	UM		0.42	0.66	0.41		0.32	
Naphthalene	PAHMSUS	0.08	mg/kg^	UM		0.48	0.20	0.25		0.29	
Phenanthrene	PAHMSUS	0.08	mg/kg^	UM		0.60	1.43	1.24		0.80	
Pyrene	PAHMSUS	0.08	mg/kg^	UM		1.34	1.63	1.16		1.30	
Total PAH 16	PAHMSUS	1.28	mg/kg^	U		9.00	10.8	8.14		8.34	
Dimethylphenols	PHEHPLCUV	0.05	mg/l	U	<0.05				<0.05		<0.05
Methylphenols	PHEHPLCUV	0.05	mg/l	U	<0.05				<0.05		<0.05
Phenol	PHEHPLCUV	0.05	mg/l	U	<0.05				<0.05		<0.05
Total Phenols	PHEHPLCUV	0.2	mg/l	U	<0.20				<0.20		<0.20
Frimethylphenols	PHEHPLCUV	0.05	mg/l	U	<0.05				<0.05		<0.05
2,4,5-Trichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D		<0.080 D
2,4,6-Trichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D		<0.080 D
,4-Dichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D		<0.080 D
,4-Dimethylphenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D		<0.080 D
,4-Dinitrophenol	SVOCSW	0.01	mg/l	N	<0.040 D				<0.040 p		<0.040 D
2-Chlorophenol	svocsw	0.02	mg/l	N	<0.080 D				<0.080 D		<0.080 D

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	005	006	0	07	008	0	09
			Custor	ner ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2 a	at 0.25
			Sample	Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/202
Analysis	Method Code	MDL	Units A	ccred.							
Dibenzo[a,h]anthracene	PAHMSUS	0.08	mg/kg^	UM	<0.10*	0.14*		<0.12	<0.11		<0.09*
Fluoranthene	PAHMSUS	0.08	mg/kg^	UM	0.36*	0.69*		<0.12	0.15		0.63*
Fluorene	PAHMSUS	0.08	mg/kg^	UM	0.10*	0.10*		<0.12	<0.11		<0.09*
ndeno[1,2,3-cd]pyrene	PAHMSUS	0.08	mg/kg^	UM	<0.10*	0.21*		<0.12	<0.11		<0.09*
Naphthalene	PAHMSUS	0.08	mg/kg^	UM	3.66*	6.19*		<0.12	0.19		1.97*
Phenanthrene	PAHMSUS	0.08	mg/kg^	UM	1.52*	3.91*		<0.12	0.25		1.82*
Pyrene	PAHMSUS	0.08	mg/kg^	UM	0.35*	0.70*		<0.12	0.12		0.58*
Total PAH 16	PAHMSUS	1.28	mg/kg^	U	7.81*	14.9*		<1.95	1.98		7.55*
Dimethylphenols	PHEHPLCUV	0.05	mg/l	U			<0.05			<0.05	
Methylphenols	PHEHPLCUV	0.05	mg/l	U			<0.05			<0.05	
Phenol	PHEHPLCUV	0.05	mg/l	U			<0.05			<0.05	
Total Phenols	PHEHPLCUV	0.2	mg/l	U			<0.20			<0.20	
Frimethylphenols	PHEHPLCUV	0.05	mg/l	U			<0.05			<0.05	
2,4,5-Trichlorophenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 p	
2,4,6-Trichlorophenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 p	
2,4-Dichlorophenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 p	
2,4-Dimethylphenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 p	
2,4-Dinitrophenol	SVOCSW	0.01	mg/l	N			<0.040 D			<0.040 p	
2-Chlorophenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results				_							
			Sam	ple ID	010	011	-	12	013	-	14
			Custor	mer ID	TP2 at 0.8	TP2 at 1.2	TP2 a	at 3.0	TP3 at 0.35	TP3 a	at 0.75
			Sample	Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	ccred.							
Dibenzo[a,h]anthracene	PAHMSUS	0.08	mg/kg^	UM	0.11	<0.11		<0.10	<0 09		<0.09
Fluoranthene	PAHMSUS	0.08	mg/kg^	UM	0.87	<0.11		<0.10	0.18		<0.09
Fluorene	PAHMSUS	0.08	mg/kg^	UM	0.15	<0.11		<0.10	<0 09		<0.09
Indeno[1,2,3-cd]pyrene	PAHMSUS	0.08	mg/kg^	UM	0.28	<0.11		<0.10	<0.09		<0.09
Naphthalene	PAHMSUS	0.08	mg/kg^	UM	4.44	<0.11		<0.10	<0.09		<0.09
Phenanthrene	PAHMSUS	0.08	mg/kg^	UM	2.29	<0.11		<0.10	<0.09		<0.09
Pyrene	PAHMSUS	0.08	mg/kg^	UM	0.82	<0.11		<0.10	0.21		<0.09
Total PAH 16	PAHMSUS	1.28	mg/kg^	U	11.9	<1.82		<1.61	1.75		<1.51
Dimethylphenols	PHEHPLCUV	0.05	mg/l	U			<0.05			<0.05	
Methylphenols	PHEHPLCUV	0.05	mg/l	U			<0.05			<0.05	
Phenol	PHEHPLCUV	0.05	mg/l	U			<0.05			<0.05	
Total Phenols	PHEHPLCUV	0.2	mg/l	U			<0.20			<0.20	
Trimethylphenols	PHEHPLCUV	0.05	mg/l	U			<0.05			<0.05	
2,4,5-Trichlorophenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	
2,4,6-Trichlorophenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	
2,4-Dichlorophenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	
2,4-Dimethylphenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	
2,4-Dinitrophenol	SVOCSW	0.01	mg/l	N			<0.040 D			<0.040 D	
2-Chlorophenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	015	0	16	0	17	0	18
			Custon	ner ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
			Sample	Туре	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Sampling	Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	ccred.							
Dibenzo[a,h]anthracene	PAHMSUS	0.08	mg/kg^	UM	<0.09		<0.11		0.11*		<0.10
Fluoranthene	PAHMSUS	0.08	mg/kg^	UM	<0.09		<0.11		1.43*		0.19
Fluorene	PAHMSUS	0.08	mg/kg^	UM	<0.09		<0.11		0.20*		<0.10
ndeno[1,2,3-cd]pyrene	PAHMSUS	0.08	mg/kg^	UM	<0.09		<0.11		0.29*		<0.10
Naphthalene	PAHMSUS	0.08	mg/kg^	UM	<0.09		<0.11		4.55*		<0.10
Phenanthrene	PAHMSUS	0.08	mg/kg^	UM	<0.09		<0.11		4.87*		0.15
Pyrene	PAHMSUS	0.08	mg/kg^	UM	<0.09		<0.11		1.59*		0.16
Total PAH 16	PAHMSUS	1.28	mg/kg^	U	<1.50		<1.76		19.0*		1.84
Dimethylphenols	PHEHPLCUV	0.05	mg/l	U		<0.05		<0.05		<0.05	
Methylphenols	PHEHPLCUV	0.05	mg/l	U		<0.05		<0.05		<0.05	
Phenol	PHEHPLCUV	0.05	mg/l	U		<0.05		<0.05		<0.05	
Total Phenols	PHEHPLCUV	0.2	mg/l	U		<0.20		<0.20		<0.20	
Trimethylphenols	PHEHPLCUV	0.05	mg/l	U		<0.05		<0.05		<0.05	
2,4,5-Trichlorophenol	SVOCSW	0.02	mg/l	N		<0.080 D		<0.080 D		<0.080 D	
2,4,6-Trichlorophenol	SVOCSW	0.02	mg/l	N		<0.080 p		<0.080 p		<0.080 D	
2,4-Dichlorophenol	SVOCSW	0.02	mg/l	N		<0.080 D		<0.080 p		<0.080 D	
2,4-Dimethylphenol	SVOCSW	0.02	mg/l	N		<0.080 D		<0.080 D		<0.080 D	
2,4-Dinitrophenol	SVOCSW	0.01	mg/l	N		<0.040 p		<0.040 p		<0.040 p	
2-Chlorophenol	SVOCSW	0.02	mg/l	N		<0.080 D		<0.080 D		<0.080 D	-

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	iple ID	0	19	020
			Custo	mer ID	TP7	at 2.2	TP7 at 3.0
			Sample	е Туре	LPL	SOLID	SOLID
			Samplin	g Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	Accred.			
Dibenzo[a,h]anthracene	PAHMSUS	0.08	mg/kg^	UM		<0.11	<0.11
Fluoranthene	PAHMSUS	0.08	mg/kg^	UM		<0.11	<0.11
Fluorene	PAHMSUS	0.08	mg/kg^	UM		<0.11	<0.11
Indeno[1,2,3-cd]pyrene	PAHMSUS	0.08	mg/kg^	UM		<0.11	<0.11
Naphthalene	PAHMSUS	0.08	mg/kg^	UM		<0.11	<0.11
Phenanthrene	PAHMSUS	0.08	mg/kg^	UM		<0.11	0.12
Pyrene	PAHMSUS	0.08	mg/kg^	UM		<0.11	<0.11
Total PAH 16	PAHMSUS	1.28	mg/kg^	U		<1.68	1.76
Dimethylphenols	PHEHPLCUV	0.05	mg/l	U	<0.05		
Methylphenols	PHEHPLCUV	0.05	mg/l	U	<0.05		
Phenol	PHEHPLCUV	0.05	mg/l	U	<0.05		
Total Phenois	PHEHPLCUV	0.2	mg/l	U	<0.20		
Trimethylphenols	PHEHPLCUV	0.05	mg/l	U	<0.05		
2,4,5-Trichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D		
2,4,6-Trichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D		
2,4-Dichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D		
2,4-Dimethylphenol	SVOCSW	0.02	mg/l	N	<0.080 D		
2,4-Dinitrophenol	SVOCSW	0.01	mg/l	N	<0.040 p		
2-Chlorophenol	SVOCSW	0.02	mg/l	N	<0.080 p		

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sa	ample ID	0	01	002	003	0	04	005
			Cust	omer ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4	at 1.8	TP1 at 0.2
			Sam	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Sampl	ing Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
2-Methylphenol	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 p		<0.020 D
-Nitrophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D		<0.080 D
3- & 4-Methylphenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 p		<0.080 D
1,6-Dinitro-2-methylphenol	SVOCSW	0.05	mg/l	N	<0.200 p				<0.200 p		<0.200 p
4-Chloro-3-methylphenol	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p		<0.020 D
4-Chlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D		<0.080 D
1-Nitrophenol	SVOCSW	0.05	mg/l	N	<0.200 D				<0.200 p		<0.200 D
Pentachlorophenol	SVOCSW	0.05	mg/l	N	<0.200 D				<0.200 p		<0.200 p
Phenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 p		<0.080 D
otal (15) Phenois	SVOCSW	0.35	mg/l	N	<1.40				<1.40		<1.40
2,4,5-Trichlorophenol	PHEMS	0.02	mg/kg^	U		<0.02				<0.02	
2,4,6-Trichlorophenol	PHEMS	0.02	mg/kg^	U		<0.02				<0.02	
2,4-Dichlorophenol	PHEMS	0.03	mg/kg^	U		<0.03				<0.04	
2,4-Dimethylphenol	PHEMS	0.02	mg/kg^	U		<0.02				0.05	
,4-Dinitrophenol	PHEMS	0.04	mg/kg^	N		<0.05				<0.05	
2-Chlorophenol	PHEMS	0.03	mg/kg^	U		<0.03				<0.04	
-Methylphenol	PHEMS	0.03	mg/kg^	U		0.04				0.04	
-Nitrophenol	PHEMS	0.03	mg/kg^	U		<0.03				<0.04	
3- & 4-Methylphenol	PHEMS	0.02	mg/kg^	U		0.06				0.07	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sai	nple ID	005	006	0	07	800		09
			Custo	omer ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2 a	at 0.25
			Samp	le Type	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samplin	ng Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
2-Methylphenol	SVOCSW	0.005	mg/l	N			<0.020 D			<0.020 D	
2-Nitrophenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	
3- & 4-Methylphenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	
4,6-Dinitro-2-methylphenol	SVOCSW	0.05	mg/l	N			<0.200 D			<0.200 D	
4-Chloro-3-methylphenol	SVOCSW	0.005	mg/l	N			<0.020 D			<0.020 p	
4-Chlorophenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	
4-Nitrophenol	SVOCSW	0.05	mg/l	N			<0.200 D			<0.200 p	
Pentachlorophenol	SVOCSW	0.05	mg/l	N			<0.200 D			<0.200 p	
Phenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	
Total (15) Phenols	SVOCSW	0.35	mg/l	N			<1.40			<1.40	
2,4,5-Trichlorophenol	PHEMS	0.02	mg/kg^	U	<0 02*			<0.03			<0.02*
2,4,6-Trichlorophenol	PHEMS	0.02	mg/kg^	U	<0 02*			<0.03			<0.02*
2,4-Dichlorophenol	PHEMS	0.03	mg/kg^	U	<0 04*			<0.05			<0.03*
2,4-Dimethylphenol	PHEMS	0.02	mg/kg^	U	0.13*			<0.03			0.24*
2,4-Dinitrophenol	PHEMS	0.04	mg/kg^	N	<0.05			<0.06			<0.05
2-Chlorophenol	PHEMS	0.03	mg/kg^	U	<0 04*			<0.05			<0.03*
2-Methylphenol	PHEMS	0.03	mg/kg^	U	0.31*			<0.05			0.52*
2-Nitrophenol	PHEMS	0.03	mg/kg^	U	<0 04*			<0.05			<0.03*
3- & 4-Methylphenol	PHEMS	0.02	mg/kg^	U	0.43*			<0.03			1.15*

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sar	nple ID	010	011		12	013		14
			Custo	omer ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3 a	at 0.75
			Samp	le Type	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samplin	ng Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
2-Methylphenol	SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 p	
2-Nitrophenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	
3- & 4-Methylphenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	
4,6-Dinitro-2-methylphenol	SVOCSW	0.05	mg/l	N			<0.200 D			<0.200 p	
4-Chloro-3-methylphenol	SVOCSW	0.005	mg/l	N			<0.020 D			<0.020 p	
4-Chlorophenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 p	
4-Nitrophenol	SVOCSW	0.05	mg/l	N			<0.200 p			<0.200 p	
Pentachlorophenol	SVOCSW	0.05	mg/l	N			<0.200 p			<0.200 p	
Phenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	
Total (15) Phenols	SVOCSW	0.35	mg/l	N			<1.40			<1.40	
2,4,5-Trichlorophenol	PHEMS	0.02	mg/kg^	U				<0.03			<0.02
2,4,6-Trichlorophenol	PHEMS	0.02	mg/kg^	U				<0.03			<0.02
2,4-Dichlorophenol	PHEMS	0.03	mg/kg^	U				<0.04			<0.04
2,4-Dimethylphenol	PHEMS	0.02	mg/kg^	U				<0.03			<0.02
2,4-Dinitrophenol	PHEMS	0.04	mg/kg^	N				<0.05			<0.05
2-Chlorophenol	PHEMS	0.03	mg/kg^	U				<0.04			<0.04
2-Methylphenol	PHEMS	0.03	mg/kg^	U				<0.04			<0.04
2-Nitrophenol	PHEMS	0.03	mg/kg^	U				<0.04			<0.04
3- & 4-Methylphenol	PHEMS	0.02	mg/kg^	U				<0.03			<0.02

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sar	nple ID	015	0	16	0	17	0	18
			Custo	mer ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
			Samp	le Type	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Samplin	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
2-Methylphenol	SVOCSW	0.005	mg/l	N		<0.020 p		<0.020 p		<0.020 D	
2-Nitrophenol	svocsw	0.02	mg/l	N		<0.080 p		<0.080 D		<0.080 D	
3- & 4-Methylphenol	svocsw	0.02	mg/l	N		<0.080 D		<0.080 D		<0.080 D	
4,6-Dinitro-2-methylphenol	SVOCSW	0.05	mg/l	N		<0.200 p		<0.200 D		<0.200 p	
4-Chloro-3-methylphenol	svocsw	0.005	mg/l	N		<0.020 p		<0.020 p		<0.020 p	
4-Chlorophenol	svocsw	0.02	mg/l	N		<0.080 D		<0.080 D		<0.080 D	
4-Nitrophenol	svocsw	0.05	mg/l	N		<0.200 p		<0.200 D		<0.200 D	
Pentachlorophenol	svocsw	0.05	mg/l	N		<0.200 p		<0.200 D		<0.200 p	
Phenol	svocsw	0.02	mg/l	N		<0.080 D		<0.080 D		<0.080 D	
Total (15) Phenols	svocsw	0.35	mg/l	N		<1.40		<1.40		<1.40	
2,4,5-Trichlorophenol	PHEMS	0.02	mg/kg^	U			<0.03		<0.02*		<0.03
2,4,6-Trichlorophenol	PHEMS	0.02	mg/kg^	U			<0.03		<0.02*		<0.03
2,4-Dichlorophenol	PHEMS	0.03	mg/kg^	U			<0.04		<0.03*		<0.04
2,4-Dimethylphenol	PHEMS	0.02	mg/kg^	U			<0.03		0.86*		0.03
2,4-Dinitrophenol	PHEMS	0.04	mg/kg^	N			<0.06		<0 04		<0.05
2-Chlorophenol	PHEMS	0.03	mg/kg^	U			<0.04		<0.03*		<0.04
2-Methylphenol	PHEMS	0.03	mg/kg^	U			<0.04		2.63*		0.07
2-Nitrophenol	PHEMS	0.03	mg/kg^	U			<0.04		<0.03*		<0.04
3- & 4-Methylphenol	PHEMS	0.02	mg/kg^	U			<0.03		5.19*		0.14

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			S	ample ID	0	19	020
			Cus	stomer ID	TP7	at 2.2	TP7 at 3.0
			Sam	nple Type	LPL	SOLID	SOLID
			Samp	ling Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
2-Methylphenol	svocsw	0.005	mg/l	N	<0.020 D		
2-Nitrophenol	svocsw	0.02	mg/l	N	<0.080 D		
3- & 4-Methylphenol	SVOCSW	0.02	mg/l	N	<0.080 D		
4,6-Dinitro-2-methylphenol	svocsw	0.05	mg/l	N	<0.200 D		
4-Chloro-3-methylphenol	SVOCSW	0.005	mg/l	N	<0.020 D		
4-Chlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D		
4-Nitrophenol	SVOCSW	0.05	mg/l	N	<0.200 p		
Pentachlorophenol	SVOCSW	0.05	mg/l	N	<0.200 p		
Phenol	SVOCSW	0.02	mg/l	N	<0.080 D		
Total (15) Phenols	SVOCSW	0.35	mg/l	N	<1.40		
2,4,5-Trichlorophenol	PHEMS	0.02	mg/kg^	U		<0.03	
2,4,6-Trichlorophenol	PHEMS	0.02	mg/kg^	U		<0.03	
2,4-Dichlorophenol	PHEMS	0.03	mg/kg^	U		<0.04	
2,4-Dimethylphenol	PHEMS	0.02	mg/kg^	U		0.04	
2,4-Dinitrophenol	PHEMS	0.04	mg/kg^	N		<0.05	
2-Chlorophenol	PHEMS	0.03	mg/kg^	U		<0.04	
2-Methylphenol	PHEMS	0.03	mg/kg^	U		<0.04	
2-Nitrophenol	PHEMS	0.03	mg/kg^	U		<0.04	
3- & 4-Methylphenol	PHEMS	0.02	mg/kg^	U		<0.03	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	0	01	002	003	0	04	005
			Custo	mer ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4	at 1.8	TP1 at 0.2
			Sample	е Туре	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Samplin	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	Accred.							
4,6-Dinitro-2-methylphenol	PHEMS	0.03	mg/kg^	N		<0.03				<0.04	
4-Chloro-3-methylphenol	PHEMS	0.03	mg/kg^	U		<0.03				<0.04	
4-Chlorophenol	PHEMS	0.04	mg/kg^	U		<0.05				<0.05	
4-Nitrophenol	PHEMS	0.06	mg/kg^	U		<0.07				<0.07	
Pentachlorophenol	PHEMS	0.03	mg/kg^	N		<0.03				<0.04	
Phenol	PHEMS	0.03	mg/kg^	U		<0.03				<0.04	
Total (15) Phenols	PHEMS	0.46	mg/kg^	N		0.57				0.64	
1,2,4-Trichlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p		<0.020 p
1,2-Dichlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p		<0.020 D
1,3-Dichlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 p		<0.020 p
1,4-Dichlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 p		<0.020 p
I-Methylnaphthalene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 p		<0.008 p
2,4,5-Trichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D		<0.080 p
2,4,6-Trichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 p		<0.080 D
2,4-Dichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D		<0.080 D
2,4-Dimethylphenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D		<0.080 D
2,4-Dinitrophenol	SVOCSW	0.01	mg/l	N	<0.040 D				<0.040 p		<0.040 p
2,4-Dinitrotoluene	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D		<0.020 D
2,6-Dinitrotoluene	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p		<0.020 p

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sample ID	005	006	0	07	008	0	09
			Customer ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2 a	at 0.25
			Sample Type	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Accred.							
4,6-Dinitro-2-methylphenol	PHEMS	0.03	mg/kg^ N	<0.04			<0.05			<0.03
4-Chloro-3-methylphenol	PHEMS	0.03	mg/kg^ U	<0 04*			<0.05			<0.03*
4-Chlorophenol	PHEMS	0.04	mg/kg^ U	<0 05*			<0.06			<0.05*
1-Nitrophenol	PHEMS	0.06	mg/kg^ U	<0 07*			<0.09			<0.07*
Pentachlorophenol	PHEMS	0.03	mg/kg^ N	<0.04			<0.05			<0.03
Phenol	PHEMS	0.03	mg/kg^ U	0.28*			<0.05			0.62*
Total (15) Phenols	PHEMS	0.46	mg/kg^ N	1.59			<0.70			2.94
1,2,4-Trichlorobenzene	SVOCSW	0.005	mg/l N			<0.020 p			<0.020 p	
1,2-Dichlorobenzene	svocsw	0.005	mg/l N			<0.020 p			<0.020 p	
1,3-Dichlorobenzene	svocsw	0.005	mg/l N			<0.020 D			<0.020 p	
1,4-Dichlorobenzene	svocsw	0.005	mg/l N			<0.020 D			<0.020 p	
1-Methylnaphthalene	svocsw	0.002	mg/l N			<0.008 D			<0.008 D	
2,4,5-Trichlorophenol	svocsw	0.02	mg/l N			<0.080 D			<0.080 D	
2,4,6-Trichlorophenol	SVOCSW	0.02	mg/l N			<0.080 D			<0.080 p	
2,4-Dichlorophenol	SVOCSW	0.02	mg/l N			<0.080 D			<0.080 p	
2,4-Dimethylphenol	SVOCSW	0.02	mg/l N			<0.080 D			<0.080 p	
2,4-Dinitrophenol	SVOCSW	0.01	mg/l N			<0.040 D			<0.040 p	
2,4-Dinitrotoluene	SVOCSW	0.005	mg/l N			<0.020 D			<0.020 p	
2,6-Dinitrotoluene	SVOCSW	0.005	mg/l N			<0.020 p			<0.020 D	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sample ID	010	011	0	12	013	0	14
			Customer IE	TP2 at 0.8	TP2 at 1.2		at 3.0	TP3 at 0.35		at 0.75
			Sample Type	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Accred							
4,6-Dinitro-2-methylphenol	PHEMS	0.03	mg/kg^ N				<0.04			<0.04
4-Chloro-3-methylphenol	PHEMS	0.03	mg/kg^ U				<0.04			<0.04
4-Chlorophenol	PHEMS	0.04	mg/kg^ U				<0.05			<0.05
4-Nitrophenol	PHEMS	0.06	mg/kg^ U				<0.08			<0.07
Pentachlorophenol	PHEMS	0.03	mg/kg^ N				<0.04			<0.04
Phenol	PHEMS	0.03	mg/kg^ U				<0.04			<0.04
Total (15) Phenols	PHEMS	0.46	mg/kg^ N				<0.58			<0.54
1,2,4-Trichlorobenzene	SVOCSW	0.005	mg/l N			<0.020 p			<0.020 p	
1,2-Dichlorobenzene	SVOCSW	0.005	mg/l N			<0.020 D			<0.020 D	
1,3-Dichlorobenzene	SVOCSW	0.005	mg/l N			<0.020 D			<0.020 D	
1,4-Dichlorobenzene	SVOCSW	0.005	mg/l N			<0.020 p			<0.020 D	
1-Methylnaphthalene	SVOCSW	0.002	mg/l N			<0.008 p			<0.008 D	
2,4,5-Trichlorophenol	SVOCSW	0.02	mg/l N			<0.080 p			<0.080 D	
2,4,6-Trichlorophenol	SVOCSW	0.02	mg/l N			<0.080 p			<0.080 D	
2,4-Dichlorophenol	SVOCSW	0.02	mg/l N			<0.080 p			<0.080 p	
2,4-Dimethylphenol	SVOCSW	0.02	mg/l N			<0.080 p			<0.080 p	
2,4-Dinitrophenol	SVOCSW	0.01	mg/l N			<0.040 p			<0.040 p	
2,4-Dinitrotoluene	SVOCSW	0.005	mg/l N			<0.020 p			<0.020 p	
2,6-Dinitrotoluene	svocsw	0.005	mg/l N			<0.020 p			<0.020 p	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

		Sam	ple ID	015	0	16	0	17	0	18
		Custor	mer ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
		Sample	Туре	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
		Sampling	Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Method Code	MDL	Units A	ccred.							
PHEMS	0.03	mg/kg^	N			<0.04		<0 03		<0.04
PHEMS	0.03	mg/kg^	U			<0.04		<0.03*		<0.04
PHEMS	0.04	mg/kg^	U			<0.06		<0.04*		<0.05
PHEMS	0.06	mg/kg^	U			<0.08		<0.07*		<0.08
PHEMS	0.03	mg/kg^	N			<0.04		<0.03		<0.04
PHEMS	0.03	mg/kg^	U			<0.04		3.09*		0.08
PHEMS	0.46	mg/kg^	N			<0.63		12.2		0.78
SVOCSW	0.005	mg/l	N		<0.020 p		<0.020 p		<0.020 D	
SVOCSW	0.005	mg/l	N		<0.020 p		<0.020 D		<0.020 p	
SVOCSW	0.005	mg/l	N		<0.020 p		<0.020 p		<0.020 D	
SVOCSW	0.005	mg/l	N		<0.020 D		<0.020 D		<0.020 D	
SVOCSW	0.002	mg/l	N		<0.008 D		<0.008 D		<0.008 D	
SVOCSW	0.02	mg/l	N		<0.080 D		<0.080 D		<0.080 D	
SVOCSW	0.02	mg/l	N		<0.080 D		<0.080 D		<0.080 D	
SVOCSW	0.02	mg/l	N		<0.080 D		<0.080 p		<0.080 D	
SVOCSW	0.02	mg/l	N		<0.080 D		<0.080 p		<0.080 D	
SVOCSW	0.01	mg/l	N		<0.040 p		<0.040 p		<0.040 p	
SVOCSW	0.005	mg/l	N		<0.020 p		<0.020 p		<0.020 p	
SVOCSW	0.005	mg/l	N		<0.020 D		<0.020 D		<0.020 p	
	PHEMS PHEMS PHEMS PHEMS PHEMS PHEMS PHEMS PHEMS SVOCSW	PHEMS 0.03 PHEMS 0.03 PHEMS 0.04 PHEMS 0.06 PHEMS 0.03 PHEMS 0.03 PHEMS 0.46 SVOCSW 0.005 SVOCSW 0.005 SVOCSW 0.005 SVOCSW 0.005 SVOCSW 0.002 SVOCSW 0.02 SVOCSW 0.02 SVOCSW 0.02 SVOCSW 0.02 SVOCSW 0.02 SVOCSW 0.01 SVOCSW 0.005	Method Code MDL Units A	PHEMS 0.03 mg/kg^ N PHEMS 0.03 mg/kg^ U PHEMS 0.04 mg/kg^ U PHEMS 0.06 mg/kg^ U PHEMS 0.03 mg/kg^ N PHEMS 0.03 mg/kg^ N PHEMS 0.46 mg/kg^ N SVOCSW 0.005 mg/l N SVOCSW 0.005 mg/l N SVOCSW 0.005 mg/l N SVOCSW 0.002 mg/l N SVOCSW 0.02 mg/l N SVOCSW 0.02 mg/l N SVOCSW 0.02 mg/l N SVOCSW 0.01 mg/l N SVOCSW 0.01 mg/l N	TP3 at 1.8	TP3 at 1.8 TP3 TP3	TP3 at 1.8 TP3 at 2.9	TP3 at 1.8	PHEMS	TP3 at 1.8

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			San	nple ID	0	19	020
			Custo	mer ID	TP7	at 2.2	TP7 at 3.0
			Sampl	е Туре	LPL	SOLID	SOLID
			Samplin	g Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
4,6-Dinitro-2-methylphenol	PHEMS	0.03	mg/kg^	N		<0.04	
4-Chloro-3-methylphenol	PHEMS	0.03	mg/kg^	U		<0.04	
4-Chlorophenol	PHEMS	0.04	mg/kg^	U		<0.05	
4-Nitrophenol	PHEMS	0.06	mg/kg^	U		<0.08	
Pentachlorophenol	PHEMS	0.03	mg/kg^	N		<0.04	
Phenol	PHEMS	0.03	mg/kg^	U		<0.04	
Total (15) Phenols	PHEMS	0.46	mg/kg^	N		0.61	
1,2,4-Trichlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 p		
1,2-Dichlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 D		
1,3-Dichlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 D		
1,4-Dichlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 D		
1-Methylnaphthalene	SVOCSW	0.002	mg/l	N	<0.008 D		
2,4,5-Trichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D		
2,4,6-Trichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D		
2,4-Dichlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D		
2,4-Dimethylphenol	SVOCSW	0.02	mg/l	N	<0.080 D		
2,4-Dinitrophenol	SVOCSW	0.01	mg/l	N	<0.040 D		
2,4-Dinitrotoluene	SVOCSW	0.005	mg/l	N	<0.020 D		
2,6-Dinitrotoluene	SVOCSW	0.005	mg/l	N	<0.020 D		

Page 37 of 120

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sa	mple ID	0	01	002	003	0	04	005
			Cust	omer ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4	at 1.8	TP1 at 0.2
			Samp	ole Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Sampli	ng Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
2-Chloronaphthalene	SVOCSW	0.002	mg/l	N	<0.008 □				<0.008 D		<0.008 D
2-Chlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D		<0.080 D
2-Methylnaphthalene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D		<0.008 D
2-Methylphenol	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D		<0.020 D
2-Nitroaniline	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p		<0.020 p
2-Nitrophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D		<0.080 D
3- & 4-Methylphenol	SVOCSW	0.02	mg/l	N	<0.080 p				<0.080 D		<0.080 D
3-Nitroaniline	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p		<0.020 p
1,6-Dinitro-2-methylphenol	SVOCSW	0.05	mg/l	N	<0.200 D				<0.200 p		<0.200 D
-Bromophenyl-phenylether	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p		<0.020 p
-Chloro-3-methylphenol	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p		<0.020 p
-Chloroaniline	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p		<0.020 p
i-Chlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D		<0.080 D
-Chlorophenyl-phenylether	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 p		<0.020 p
-Nitroaniline	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 p		<0.020 p
-Nitrophenol	SVOCSW	0.05	mg/l	N	<0.200 p				<0.200 p		<0.200 p
cenaphthene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D		<0.008 D
cenaphthylene	SVOCSW	0.002	mg/l	N	<0.008 p				<0.008 p		<0.008 D
nthracene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D		<0.008 D

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	005	006		07	800	0	09
			Custo	mer ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2 a	at 0.25
			Sample	е Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	Accred.							
2-Chloronaphthalene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
2-Chlorophenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	
2-Methylnaphthalene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
2-Methylphenol	SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 D	
2-Nitroaniline	SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 D	
2-Nitrophenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	
3- & 4-Methylphenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	
3-Nitroaniline	SVOCSW	0.005	mg/l	N			<0.020 D			<0.020 D	
4,6-Dinitro-2-methylphenol	SVOCSW	0.05	mg/l	N			<0.200 D			<0.200 D	
4-Bromophenyl-phenylether	svocsw	0.005	mg/l	N			<0.020 D			<0.020 D	
4-Chloro-3-methylphenol	svocsw	0.005	mg/l	N			<0.020 p			<0.020 p	
4-Chloroaniline	svocsw	0.005	mg/l	N			<0.020 D			<0.020 D	
4-Chlorophenol	svocsw	0.02	mg/l	N			<0.080 D			<0.080 D	
4-Chlorophenyl-phenylether	svocsw	0.005	mg/l	N			<0.020 p			<0.020 p	
I-Nitroaniline	svocsw	0.005	mg/l	N			<0.020 p			<0.020 p	
I-Nitrophenol	SVOCSW	0.05	mg/l	N			<0.200 p			<0.200 p	
Acenaphthene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
Acenaphthylene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
Anthracene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results											
			San	nple ID	010	011	0	12	013	0.	14
			Custo	mer ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3 a	t 0.75
			Sampl	е Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samplin	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units /	Accred.							
2-Chloronaphthalene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
2-Chlorophenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	
2-Methylnaphthalene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
2-Methylphenol	svocsw	0.005	mg/l	N			<0.020 D			<0.020 p	
2-Nitroaniline	svocsw	0.005	mg/l	N			<0.020 D			<0.020 D	
2-Nitrophenol	svocsw	0.02	mg/l	N			<0.080 D			<0.080 D	
3- & 4-Methylphenol	svocsw	0.02	mg/l	N			<0.080 D			<0.080 p	
3-Nitroaniline	SVOCSW	0.005	mg/l	N			<0.020 D			<0.020 p	
4,6-Dinitro-2-methylphenol	SVOCSW	0.05	mg/l	N			<0.200 p			<0.200 p	
4-Bromophenyl-phenylether	SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 p	
4-Chloro-3-methylphenol	SVOCSW	0.005	mg/l	N			<0.020 D			<0.020 p	
4-Chloroaniline	SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 p	
4-Chlorophenol	svocsw	0.02	mg/l	N			<0.080 D			<0.080 D	
4-Chlorophenyl-phenylether	svocsw	0.005	mg/l	N			<0.020 p			<0.020 p	
4-Nitroaniline	svocsw	0.005	mg/l	N			<0.020 D			<0.020 D	
4-Nitrophenol	svocsw	0.05	mg/l	N			<0.200 p			<0.200 D	
Acenaphthene	svocsw	0.002	mg/l	N			<0.008 D			<0.008 D	
Acenaphthylene	SVOCSW	0.002	mg/l	N			<0.008 p			<0.008 D	
Anthracene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
									1		

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results											
			Sam	nple ID	015	0	16	0	17	0	18
			Custo	mer ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
			Sample	е Туре	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Samplin	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	Accred.							
2-Chloronaphthalene	SVOCSW	0.002	mg/l	N		<0.008 p		<0.008 p		<0.008 p	
2-Chlorophenol	SVOCSW	0.02	mg/l	N		<0.080 p		<0.080 D		<0.080 D	
2-Methylnaphthalene	SVOCSW	0.002	mg/l	N		<0.008 D		<0.008 D		<0.008 D	
2-Methylphenol	svocsw	0.005	mg/l	N		<0.020 p		<0.020 p		<0.020 p	
2-Nitroaniline	svocsw	0.005	mg/l	N		<0.020 p		<0.020 D		<0.020 p	
2-Nitrophenol	svocsw	0.02	mg/l	N		<0.080 D		<0.080 D		<0.080 D	
3- & 4-Methylphenol	svocsw	0.02	mg/l	N		<0.080 D		<0.080 D		<0.080 D	
3-Nitroaniline	SVOCSW	0.005	mg/l	N		<0.020 p		<0.020 D		<0.020 D	
4,6-Dinitro-2-methylphenol	SVOCSW	0.05	mg/l	N		<0.200 p		<0.200 p		<0.200 p	
4-Bromophenyl-phenylether	SVOCSW	0.005	mg/l	N		<0.020 p		<0.020 D		<0.020 p	
4-Chloro-3-methylphenol	SVOCSW	0.005	mg/l	N		<0.020 p		<0.020 D		<0.020 p	
4-Chloroaniline	SVOCSW	0.005	mg/l	N		<0.020 p		<0.020 p		<0.020 p	
4-Chlorophenol	svocsw	0.02	mg/l	N		<0.080 p		<0.080 p		<0.080 p	
4-Chlorophenyl-phenylether	SVOCSW	0.005	mg/l	N		<0.020 p		<0.020 p		<0.020 p	
4-Nitroaniline	svocsw	0.005	mg/l	N		<0.020 p		<0.020 p		<0.020 p	
4-Nitrophenol	svocsw	0.05	mg/l	N		<0.200 p		<0.200 p		<0.200 p	
Acenaphthene	SVOCSW	0.002	mg/l	N		<0.008 p		<0.008 p		<0.008 p	
Acenaphthylene	SVOCSW	0.002	mg/l	N		<0.008 p		<0.008 D		<0.008 p	
Anthracene	SVOCSW	0.002	mg/l	N		<0.008 D		<0.008 D		<0.008 D	
			1								

Project Name: Imingham Dock

Project No: 22052067

Date Issued: 22/06/2022

			s	ample ID	0	19	020
			Cus	stomer ID	TP7	at 2.2	TP7 at 3.0
			San	nple Type	LPL	SOLID	SOLID
			Samp	ling Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
2-Chloronaphthalene	SVOCSW	0.002	mg/l	N	<0.008 D		
2-Chlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D		
2-Methylnaphthalene	SVOCSW	0.002	mg/l	N	<0.008 D		
2-Methylphenol	svocsw	0.005	mg/l	N	<0.020 D		
2-Nitroaniline	svocsw	0.005	mg/l	N	<0.020 D		
2-Nitrophenol	svocsw	0.02	mg/l	N	<0.080 D		
3- & 4-Methylphenol	SVOCSW	0.02	mg/l	N	<0.080 D		
3-Nitroaniline	SVOCSW	0.005	mg/l	N	<0.020 D		
4,6-Dinitro-2-methylphenol	SVOCSW	0.05	mg/l	N	<0.200 D		
4-Bromophenyl-phenylether	SVOCSW	0.005	mg/l	N	<0.020 D		
4-Chloro-3-methylphenol	SVOCSW	0.005	mg/l	N	<0.020 D		
4-Chloroaniline	SVOCSW	0.005	mg/l	N	<0.020 D		
4-Chlorophenol	SVOCSW	0.02	mg/l	N	<0.080 D		
4-Chlorophenyl-phenylether	SVOCSW	0.005	mg/l	N	<0.020 D		
4-Nitroaniline	SVOCSW	0.005	mg/l	N	<0.020 D		
4-Nitrophenol	SVOCSW	0.05	mg/l	N	<0.200 D		
Acenaphthene	SVOCSW	0.002	mg/l	N	<0.008 D		
Acenaphthylene	SVOCSW	0.002	mg/l	N	<0.008 D		
Anthracene	SVOCSW	0.002	mg/l	N	<0.008 D		

Page 42 of 120

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results											
			Sa	mple ID	0	001	002	003	00	04	005
			Custo	omer ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4	at 1.8	TP1 at 0.2
			Samp	ole Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Sampli	ng Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Azobenzene	SVOCSW	0.01	mg/l	N	<0.040 D				<0.040 p		<0.040 p
Benzo[a]anthracene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D		<0.008 D
Benzo[a]pyrene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D		<0.008 D
Benzo[b]fluoranthene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D		<0.008 p
Benzo[g,h,i]perylene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D		<0.008 D
Benzo[k]fluoranthene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D		<0.008 p
Benzoic Acid	SVOCSW	0.1	mg/l	N	<0.400 D				<0.400 D		<0.400 p
Benzyl alcohol	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D		<0.020 p
Biphenyl	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D		<0.008 D
bis(2-Chloroethoxy)methane	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 p		<0.020 p
bis(2-Chloroethyl)ether	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 p		<0.020 p
bis(2-Chloroisopropyl)ether	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 p		<0.020 p
bis(2-Ethylhexyl)phthalate	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 p		<0.020 p
Butylbenzylphthalate	svocsw	0.005	mg/l	N	<0.020 D				<0.020 p		<0.020 p
Carbazole	svocsw	0.01	mg/l	N	<0.040 D				<0.040 p		<0.040 p
Chrysene	svocsw	0.002	mg/l	N	<0.008 D				<0.008 D		<0.008 p
Coronene	SVOCSW	0.05	mg/l	N	<0.200 p				<0.200 p		<0.200 p
Dibenzo[a,h]anthracene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 p		<0.008 p
Dibenzofuran	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D		<0.020 D

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	nple ID	005	006		07	800		09
			Custo	mer ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2 a	at 0.25
			Sample	e Type	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samplin	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	Accred.							
Azobenzene	SVOCSW	0.01	mg/l	N			<0.040 p			<0.040 p	
Benzo[a]anthracene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 p	
Benzo[a]pyrene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
Benzo[b]fluoranthene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
Benzo[g,h,i]perylene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
Benzo[k]fluoranthene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
Benzoic Acid	SVOCSW	0.1	mg/l	N			<0.400 D			<0.400 p	
Benzyl alcohol	SVOCSW	0.005	mg/l	N			<0.020 D			<0.020 D	
Biphenyl	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
bis(2-Chloroethoxy)methane	svocsw	0.005	mg/l	N			<0.020 p			<0.020 p	
bis(2-Chloroethyl)ether	svocsw	0.005	mg/l	N			<0.020 p			<0.020 p	
bis(2-Chloroisopropyl)ether	svocsw	0.005	mg/l	N			<0.020 p			<0.020 p	
bis(2-Ethylhexyl)phthalate	SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 p	
Butylbenzylphthalate	SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 p	
Carbazole	SVOCSW	0.01	mg/l	N			<0.040 D			<0.040 p	
Chrysene	svocsw	0.002	mg/l	N			<0.008 D			<0.008 D	
Coronene	SVOCSW	0.05	mg/l	N			<0.200 p			<0.200 p	
Dibenzo[a,h]anthracene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
Dibenzofuran	SVOCSW	0.005	mg/l	N			<0.020 D			<0.020 p	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			San	ple ID	010	011		12	013		14
			Custo	mer ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3 a	at 0.75
			Sampl	е Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samplin	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units /	Accred.							
Azobenzene	SVOCSW	0.01	mg/l	N			<0.040 p			<0.040 p	
Benzo[a]anthracene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 p	
Benzo[a]pyrene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
Benzo[b]fluoranthene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
Benzo[g,h,i]perylene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
Benzo[k]fluoranthene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
Benzoic Acid	SVOCSW	0.1	mg/l	N			<0.400 D			<0.400 D	
Benzyl alcohol	SVOCSW	0.005	mg/l	N			<0.020 D			<0.020 D	
Biphenyl	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
bis(2-Chloroethoxy)methane	svocsw	0.005	mg/l	N			<0.020 D			<0.020 D	
bis(2-Chloroethyl)ether	svocsw	0.005	mg/l	N			<0.020 D			<0.020 p	
bis(2-Chloroisopropyl)ether	svocsw	0.005	mg/l	N			<0.020 p			<0.020 p	
bis(2-Ethylhexyl)phthalate	svocsw	0.005	mg/l	N			<0.020 D			<0.020 p	
Butylbenzylphthalate	svocsw	0.005	mg/l	N			<0.020 D			<0.020 p	
Carbazole	svocsw	0.01	mg/l	N			<0.040 p			<0.040 p	
Chrysene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
Coronene	SVOCSW	0.05	mg/l	N			<0.200 D			<0.200 D	
Dibenzo[a,h]anthracene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
Dibenzofuran	SVOCSW	0.005	mg/l	N			<0.020 D			<0.020 p	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results										
			Sample ID	015	0	16		17	0	18
			Customer ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
			Sample Type	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Sampling Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Accred							
Azobenzene	SVOCSW	0.01	mg/l N		<0.040 D		<0.040 D		<0.040 p	
Benzo[a]anthracene	SVOCSW	0.002	mg/l N		<0.008 D		<0.008 D		<0.008 D	
Benzo[a]pyrene	svocsw	0.002	mg/l N		<0.008 D		<0.008 D		<0.008 D	
Benzo[b]fluoranthene	svocsw	0.002	mg/l N		<0.008 D		<0.008 D		<0.008 D	
Benzo[g,h,i]perylene	svocsw	0.002	mg/l N		<0.008 D		<0.008 D		<0.008 D	
Benzo[k]fluoranthene	svocsw	0.002	mg/l N		<0.008 D		<0.008 D		<0.008 p	
Benzoic Acid	svocsw	0.1	mg/l N		<0.400 D		<0.400 D		<0.400 D	
Benzyl alcohol	svocsw	0.005	mg/l N		<0.020 D		<0.020 D		<0.020 D	
Biphenyl	svocsw	0.002	mg/l N		<0.008 D		<0.008 D		<0.008 D	
bis(2-Chloroethoxy)methane	svocsw	0.005	mg/l N		<0.020 p		<0.020 D		<0.020 p	
bis(2-Chloroethyl)ether	svocsw	0.005	mg/l N		<0.020 D		<0.020 D		<0.020 D	
bis(2-Chloroisopropyl)ether	svocsw	0.005	mg/l N		<0.020 D		<0.020 D		<0.020 D	
bis(2-Ethylhexyl)phthalate	svocsw	0.005	mg/l N		<0.020 p		<0.020 p		<0.020 p	
Butylbenzylphthalate	svocsw	0.005	mg/l N		<0.020 D		<0.020 D		<0.020 D	
Carbazole	svocsw	0.01	mg/l N		<0.040 D		<0.040 D		<0.040 D	
Chrysene	SVOCSW	0.002	mg/l N		<0.008 D		<0.008 D		<0.008 D	
Coronene	SVOCSW	0.05	mg/l N		<0.200 D		<0.200 D		<0.200 D	
Dibenzo[a,h]anthracene	SVOCSW	0.002	mg/l N		<0.008 D		<0.008 D		<0.008 D	
Dibenzofuran	svocsw	0.005	mg/l N		<0.020 D		<0.020 D		<0.020 D	
		1			1				1	

Project Name: Imingham Dock

Project No: 22052067

Date Issued: 22/06/2022

	Sample ID			nple ID	01	19	020
				omer ID	TP7 a	at 2.2	TP7 at 3.0
			Sampl	le Type	LPL	SOLID	SOLID
			Samplin	ng Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
Azobenzene	SVOCSW	0.01	mg/l	N	<0.040 D		
Benzo[a]anthracene	SVOCSW	0.002	mg/l	N	<0.008 D		
Benzo[a]pyrene	SVOCSW	0.002	mg/l	N	<0.008 D		
Benzo[b]fluoranthene	SVOCSW	0.002	mg/l	N	<0.008 D		
Benzo[g,h,i]perylene	SVOCSW	0.002	mg/l	N	<0.008 D		
Benzo[k]fluoranthene	SVOCSW	0.002	mg/l	N	<0.008 D		
Benzoic Acid	SVOCSW	0.1	mg/l	N	<0.400 D		
Benzyl alcohol	SVOCSW	0.005	mg/l	N	<0.020 D		
Biphenyl	SVOCSW	0.002	mg/l	N	<0.008 D		
bis(2-Chloroethoxy)methane	SVOCSW	0.005	mg/l	N	<0.020 D		
bis(2-Chloroethyl)ether	SVOCSW	0.005	mg/l	N	<0.020 D		
bis(2-Chloroisopropyl)ether	SVOCSW	0.005	mg/l	N	<0.020 D		
bis(2-Ethylhexyl)phthalate	SVOCSW	0.005	mg/l	N	<0.020 D		
Butylbenzylphthalate	SVOCSW	0.005	mg/l	N	<0.020 D		
Carbazole	SVOCSW	0.01	mg/l	N	<0.040 D		
Chrysene	SVOCSW	0.002	mg/l	N	<0.008 D		
Coronene	SVOCSW	0.05	mg/l	N	<0.200 p		
Dibenzo[a,h]anthracene	SVOCSW	0.002	mg/l	N	<0.008 D		
Dibenzofuran	SVOCSW	0.005	mg/l	N	<0.020 D		

Page 47 of 120

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results											
			Sa	mple ID	0	01	002	003	00)4	005
			Custo	omer ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4 a	at 1.8	TP1 at 0.2
			Samp	le Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Samplii	ng Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Diethylphthalate	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p		<0.020 p
Dimethylphthalate	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D		<0.020 p
Di-n-butylphthalate	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 D		<0.020 p
Di-n-octylphthalate	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D		<0.008 p
Diphenyl ether	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D		<0.008 D
Fluoranthene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D		<0.008 D
Fluorene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D		<0.008 D
Hexachlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D		<0.020 D
Hexachlorobutadiene	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 D		<0.020 D
Hexachlorocyclopentadiene	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D		<0.020 p
Hexachloroethane	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 D		<0.020 p
Indeno[1,2,3-cd]pyrene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D		<0.008 p
Isophorone	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 p		<0.020 p
Naphthalene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D		<0.008 p
Nitrobenzene	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p		<0.020 p
N-Nitroso-di-n-propylamine	SVOCSW	0.005	mg/l	N	<0.020 D				<0.020 p		<0.020 p
N-Nitrosodiphenylamine	SVOCSW	0.005	mg/l	N	<0.020 p				<0.020 p		<0.020 p
Pentachlorophenol	SVOCSW	0.05	mg/l	N	<0.200 D				<0.200 p		<0.200 p
Phenanthrene	SVOCSW	0.002	mg/l	N	<0.008 p				<0.008 D		<0.008 D

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

		Sam	ple ID	005	006	00	07	008	00)9
		Custo	mer ID	TP1 at 0.2	TP1 at 0.6	TP1 a	at 2.0	TP1 at 3.0	TP2 a	t 0.25
		Sample	е Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
		Samplin	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Method Code	MDL	Units A	Accred.							
SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 p	
SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 p	
SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 p	
SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
svocsw	0.002	mg/l	N			<0.008 D			<0.008 p	
SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 p	
SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 p	
SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 p	
SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 p	
SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
SVOCSW	0.005	mg/l	N			<0.020 D			<0.020 D	
SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
SVOCSW	0.005	mg/l	N			<0.020 D			<0.020 D	
svocsw	0.005	mg/l	N			<0.020 p			<0.020 D	
svocsw	0.005	mg/l	N			<0.020 D			<0.020 D	
SVOCSW	0.05	mg/l	N			<0.200 p			<0.200 p	
svocsw	0.002	mg/l	N			<0.008 D			<0.008 D	
	SVOCSW SVOCSW	SVOCSW 0.005 SVOCSW 0.005 SVOCSW 0.002 SVOCSW 0.002 SVOCSW 0.002 SVOCSW 0.002 SVOCSW 0.005 SVOCSW 0.005	Sample S	SVOCSW 0.005 mg/l N SVOCSW 0.005 mg/l N SVOCSW 0.005 mg/l N SVOCSW 0.002 mg/l N SVOCSW 0.002 mg/l N SVOCSW 0.002 mg/l N SVOCSW 0.005 mg/l N	TP1 at 0.2 TP1 at 0.2	TP1 at 0.2 TP1 at 0.6	TP1 at 0.2 TP1 at 0.6 TP1	Nethod Code	Notice Column	TP1 at 0.2

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			San	nple ID	010	011	0	12	013	0	14
			Custo	mer ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3 a	at 0.75
			Sampl	e Type	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samplin	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units /	Accred.							
Diethylphthalate	SVOCSW	0.005	mg/l	N			<0.020 D			<0.020 p	
Dimethylphthalate	svocsw	0.005	mg/l	N			<0.020 p			<0.020 p	
Di-n-butylphthalate	svocsw	0.005	mg/l	N			<0.020 p			<0.020 p	
Di-n-octylphthalate	svocsw	0.002	mg/l	N			<0.008 D			<0.008 D	
Diphenyl ether	svocsw	0.002	mg/l	N			<0.008 D			<0.008 D	
Fluoranthene	SVOCSW	0.002	mg/l	N			<0.008 p			<0.008 D	
Fluorene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
Hexachlorobenzene	SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 p	
Hexachlorobutadiene	SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 D	
Hexachlorocyclopentadiene	SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 p	
Hexachloroethane	SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 D	
Indeno[1,2,3-cd]pyrene	SVOCSW	0.002	mg/l	N			<0.008 p			<0.008 D	
Isophorone	SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 p	
Naphthalene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 p	
Nitrobenzene	svocsw	0.005	mg/l	N			<0.020 p			<0.020 p	
N-Nitroso-di-n-propylamine	SVOCSW	0.005	mg/l	N			<0.020 p			<0.020 p	
N-Nitrosodiphenylamine	svocsw	0.005	mg/l	N			<0.020 p			<0.020 p	
Pentachlorophenol	SVOCSW	0.05	mg/l	N			<0.200 p			<0.200 p	
Phenanthrene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results										
			Sample ID	015	0	16		17	0	18
			Customer ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
			Sample Type	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Sampling Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Accred.							
Diethylphthalate	SVOCSW	0.005	mg/l N		<0.020 p		<0.020 p		<0.020 D	
Dimethylphthalate	SVOCSW	0.005	mg/l N		<0.020 p		<0.020 D		<0.020 D	
Di-n-butylphthalate	SVOCSW	0.005	mg/l N		<0.020 p		<0.020 D		<0.020 D	
Di-n-octylphthalate	SVOCSW	0.002	mg/l N		<0.008 D		<0.008 D		<0.008 D	
Diphenyl ether	svocsw	0.002	mg/l N		<0.008 D		<0.008 D		<0.008 D	
Fluoranthene	svocsw	0.002	mg/l N		<0.008 D		<0.008 D		<0.008 D	
Fluorene	svocsw	0.002	mg/l N		<0.008 D		<0.008 D		<0.008 D	
Hexachlorobenzene	svocsw	0.005	mg/l N		<0.020 p		<0.020 p		<0.020 D	
Hexachlorobutadiene	SVOCSW	0.005	mg/l N		<0.020 D		<0.020 p		<0.020 D	
Hexachlorocyclopentadiene	SVOCSW	0.005	mg/l N		<0.020 p		<0.020 D		<0.020 p	
Hexachloroethane	svocsw	0.005	mg/l N		<0.020 p		<0.020 p		<0.020 p	
Indeno[1,2,3-cd]pyrene	SVOCSW	0.002	mg/l N		<0.008 p		<0.008 D		<0.008 D	
Isophorone	SVOCSW	0.005	mg/l N		<0.020 p		<0.020 p		<0.020 p	
Naphthalene	svocsw	0.002	mg/l N		<0.008 p		<0.008 D		<0.008 D	
Nitrobenzene	svocsw	0.005	mg/l N		<0.020 D		<0.020 D		<0.020 D	
N-Nitroso-di-n-propylamine	SVOCSW	0.005	mg/l N		<0.020 D		<0.020 D		<0.020 D	
N-Nitrosodiphenylamine	SVOCSW	0.005	mg/l N		<0.020 D		<0.020 D		<0.020 D	
Pentachlorophenol	SVOCSW	0.05	mg/l N		<0.200 p		<0.200 D		<0.200 D	
Phenanthrene	svocsw	0.002	mg/l N		<0.008 p		<0.008 D		<0.008 D	
										1

Project Name: Imingham Dock

Project No: 22052067

Date Issued: 22/06/2022

			s	ample ID	0.	19	020
			Cus	tomer ID	TP7 a	at 2.2	TP7 at 3.0
			Sam	ple Type	LPL	SOLID	SOLID
			Samp	ling Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
Diethylphthalate	SVOCSW	0.005	mg/l	N	<0.020 D		
Dimethylphthalate	SVOCSW	0.005	mg/l	N	<0.020 D		
Di-n-butylphthalate	SVOCSW	0.005	mg/l	N	<0.020 D		
Di-n-octylphthalate	SVOCSW	0.002	mg/l	N	<0.008 D		
Diphenyl ether	SVOCSW	0.002	mg/l	N	<0.008 D		
Fluoranthene	SVOCSW	0.002	mg/l	N	<0.008 D		
Fluorene	SVOCSW	0.002	mg/l	N	<0.008 D		
Hexachlorobenzene	SVOCSW	0.005	mg/l	N	<0.020 D		
Hexachlorobutadiene	SVOCSW	0.005	mg/l	N	<0.020 D		
Hexachlorocyclopentadiene	SVOCSW	0.005	mg/l	N	<0.020 D		
Hexachloroethane	SVOCSW	0.005	mg/l	N	<0.020 D		
Indeno[1,2,3-cd]pyrene	SVOCSW	0.002	mg/l	N	<0.008 D		
Isophorone	SVOCSW	0.005	mg/l	N	<0.020 D		
Naphthalene	SVOCSW	0.002	mg/l	N	<0.008 D		
Nitrobenzene	SVOCSW	0.005	mg/l	N	<0.020 D		
N-Nitroso-di-n-propylamine	SVOCSW	0.005	mg/l	N	<0.020 D		
N-Nitrosodiphenylamine	SVOCSW	0.005	mg/l	N	<0.020 D		
Pentachlorophenol	SVOCSW	0.05	mg/l	N	<0.200 D		
Phenanthrene	SVOCSW	0.002	mg/l	N	<0.008 D		

Page 52 of 120

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Samp	ole ID	0	01	002	003	0	04	005
			Custom	ner ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4	at 1.8	TP1 at 0.2
			Sample	Туре	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Sampling	_	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Ad	ccred.							
Phenol	SVOCSW	0.02	mg/l	N	<0.080 D				<0.080 D		<0.080 D
Pyrene	SVOCSW	0.002	mg/l	N	<0.008 D				<0.008 D		<0.008 D
,2,4-Trichlorobenzene	SVOCSW	0.1	mg/kg^	N		<0.1				<0.1	
1,2-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
1,3-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
1,4-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
1-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U		0.6				0.6	
2,4,5-Trichlorophenol	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
2,4,6-Trichlorophenol	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
2,4-Dichlorophenol	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
2,4-Dimethylphenol	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
2,4-Dinitrophenol	SVOCSW	0.5	mg/kg^	N		<0.6				<0.6	
2,4-Dinitrotoluene	SVOCSW	0.2	mg/kg^	U		<0.2				<0.2	
2,6-Dinitrotoluene	SVOCSW	0.5	mg/kg^	U		<0.6				<0.6	
2-Chloronaphthalene	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
2-Chlorophenol	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U		0.9				0.8	
-Methylphenol	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
2-Nitroaniline	SVOCSW	0.5	mg/kg^	N		<0.6				<0.6	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	005	006	0	07	008	0	09
			Custor	mer ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2	at 0.25
			Sample	e Type	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	Accred.							
Phenol	SVOCSW	0.02	mg/l	N			<0.080 D			<0.080 D	
Pyrene	svocsw	0.002	mg/l	N			<0.008 D			<0.008 D	
1,2,4-Trichlorobenzene	svocsw	0.1	mg/kg^	N	<1.2 D			<0.2			<0.1
1,2-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
1,3-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
1,4-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
1-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U	8.1*			<0.2			2.9*
2,4,5-Trichlorophenol	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
2,4,6-Trichlorophenol	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
2,4-Dichlorophenol	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
2,4-Dimethylphenol	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
2,4-Dinitrophenol	SVOCSW	0.5	mg/kg^	N	<6.1 p			<0.8			<0.6
2,4-Dinitrotoluene	SVOCSW	0.2	mg/kg^	U	<2.4* D			<0.3			<0.2*
2,6-Dinitrotoluene	SVOCSW	0.5	mg/kg^	U	<6.1* D			<0.8			<0.6*
2-Chloronaphthalene	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
2-Chlorophenol	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
2-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U	12.6*			<0.2			5.3*
2-Methylphenol	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			0.3*
2-Nitroaniline	svocsw	0.5	mg/kg^	N	<6.1 p			<0.8			<0.6

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	010	011	0	12	013	0	14
			Custor	mer ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3 a	at 0.75
			Sample	е Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	Accred.							
Phenol	SVOCSW	0.02	mg/l	N			<0.080 p			<0.080 D	
Pyrene	SVOCSW	0.002	mg/l	N			<0.008 D			<0.008 D	
1,2,4-Trichlorobenzene	SVOCSW	0.1	mg/kg^	N				<0.1			<0.1
1,2-Dichlorobenzene	svocsw	0.1	mg/kg^	U				<0.1			<0.1
1,3-Dichlorobenzene	svocsw	0.1	mg/kg^	U				<0.1			<0.1
1,4-Dichlorobenzene	svocsw	0.1	mg/kg^	U				<0.1			<0.1
1-Methylnaphthalene	svocsw	0.1	mg/kg^	U				<0.1			<0.1
2,4,5-Trichlorophenol	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
2,4,6-Trichlorophenol	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
2,4-Dichlorophenol	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
2,4-Dimethylphenol	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
2,4-Dinitrophenol	SVOCSW	0.5	mg/kg^	N				<0.6			<0.6
2,4-Dinitrotoluene	SVOCSW	0.2	mg/kg^	U				<0.3			<0.2
2,6-Dinitrotoluene	SVOCSW	0.5	mg/kg^	U				<0.6			<0.6
2-Chloronaphthalene	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
2-Chlorophenol	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
2-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
2-Methylphenol	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
2-Nitroaniline	SVOCSW	0.5	mg/kg^	N				<0.6			<0.6

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	015	0	16	0	17	0	18
			Custor	ner ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
			Sample	Туре	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Sampling	Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	ccred.							
Phenol	SVOCSW	0.02	mg/l	N		<0.080 D		<0.080 D		<0.080 D	
Pyrene	svocsw	0.002	mg/l	N		<0.008 p		<0.008 D		<0.008 D	
1,2,4-Trichlorobenzene	svocsw	0.1	mg/kg^	N			<0.1		<1.1 p		<0.1
1,2-Dichlorobenzene	svocsw	0.1	mg/kg^	U			<0.1		<1.1* D		<0.1
1,3-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U			<0.1		<1.1* D		<0.1
1,4-Dichlorobenzene	svocsw	0.1	mg/kg^	U			<0.1		<1.1* D		<0.1
1-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U			<0.1		13.2*		0.2
2,4,5-Trichlorophenol	SVOCSW	0.1	mg/kg^	U			<0.1		<1.1* D		<0.1
2,4,6-Trichlorophenol	SVOCSW	0.1	mg/kg^	U			<0.1		<1.1* D		<0.1
2,4-Dichlorophenol	SVOCSW	0.1	mg/kg^	U			<0.1		<1.1* D		<0.1
2,4-Dimethylphenol	SVOCSW	0.1	mg/kg^	U			<0.1		<1.1* D		<0.1
2,4-Dinitrophenol	SVOCSW	0.5	mg/kg^	N			<0.7		<5.5 D		<0.6
2,4-Dinitrotoluene	SVOCSW	0.2	mg/kg^	U			<0.3		<2 2* D		<0.3
2,6-Dinitrotoluene	SVOCSW	0.5	mg/kg^	U			<0.7		<5 5* D		<0.6
2-Chloronaphthalene	SVOCSW	0.1	mg/kg^	U			<0.1		<1.1* D		<0.1
2-Chlorophenol	SVOCSW	0.1	mg/kg^	U			<0.1		<1.1* D		<0.1
2-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U			<0.1		24.1*		0.4
2-Methylphenol	SVOCSW	0.1	mg/kg^	U			<0.1		2.1*		<0.1
2-Nitroaniline	SVOCSW	0.5	mg/kg^	N			<0.7		<5.5 D		<0.6

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			s	ample ID	0	19	020
			Cus	stomer ID	TP7	at 2.2	TP7 at 3.0
			Sam	ple Type	LPL	SOLID	SOLID
			Samp	ling Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
Phenol	SVOCSW	0.02	mg/l	N	<0.080 D		
Pyrene	SVOCSW	0.002	mg/l	N	<0.008 D		
1,2,4-Trichlorobenzene	SVOCSW	0.1	mg/kg^	N		<0.1	
1,2-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U		<0.1	
1,3-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U		<0.1	
1,4-Dichlorobenzene	SVOCSW	0.1	mg/kg^	U		<0.1	
1-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U		<0.1	
2,4,5-Trichlorophenol	SVOCSW	0.1	mg/kg^	U		<0.1	
2,4,6-Trichlorophenol	SVOCSW	0.1	mg/kg^	U		<0.1	
2,4-Dichlorophenol	SVOCSW	0.1	mg/kg^	U		<0.1	
2,4-Dimethylphenol	SVOCSW	0.1	mg/kg^	U		<0.1	
2,4-Dinitrophenol	SVOCSW	0.5	mg/kg^	N		<0.7	
2,4-Dinitrotoluene	SVOCSW	0.2	mg/kg^	U		<0.3	
2,6-Dinitrotoluene	SVOCSW	0.5	mg/kg^	U		<0.7	
2-Chloronaphthalene	SVOCSW	0.1	mg/kg^	U		<0.1	
2-Chlorophenol	SVOCSW	0.1	mg/kg^	U		<0.1	
2-Methylnaphthalene	SVOCSW	0.1	mg/kg^	U		<0.1	
2-Methylphenol	SVOCSW	0.1	mg/kg^	U		<0.1	
2-Nitroaniline	SVOCSW	0.5	mg/kg^	N		<0.7	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Allarysis Results				_							
			Sa	imple ID		001	002	003		04	005
			Cust	omer ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4	at 1.8	TP1 at 0.2
			Samı	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Sampli	ing Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
2-Nitrophenol	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
3- & 4-Methylphenol	SVOCSW	0.1	mg/kg^	U		0.3				0.3	
3-Nitroaniline	svocsw	0.5	mg/kg^	N		<0.6				<0.6	
4,6-Dinitro-2-methylphenol	svocsw	0.2	mg/kg^	N		<0.2				<0.2	
4-Bromophenyl-phenylether	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
4-Chloro-3-methylphenol	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
4-Chloroaniline	SVOCSW	0.5	mg/kg^	N		0.8				0.8	
4-Chlorophenol	SVOCSW	0.5	mg/kg^	U		<0.6				<0.6	
4-Chlorophenyl-phenylether	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
4-Nitroaniline	SVOCSW	0.6	mg/kg^	N		<0.7				<0.7	
4-Nitrophenol	SVOCSW	0.5	mg/kg^	N		<0.6				<0.6	
Acenaphthene	SVOCSW	0.1	mg/kg^	U		<0.1				0.3	
Acenaphthylene	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
Anthracene	SVOCSW	0.1	mg/kg^	U		0.3				0.7	
Azobenzene	svocsw	0.3	mg/kg^	N		<0.3				<0.4	
Benzo[a]anthracene	SVOCSW	0.2	mg/kg^	U		1.0				0.8	
Benzo[a]pyrene	SVOCSW	0.2	mg/kg^	U		1.1				0.7	
Benzo[b]fluoranthene	SVOCSW	0.2	mg/kg^	U		1.4				0.9	
Benzo[g,h,i]perylene	SVOCSW	0.5	mg/kg^	U		<0.6				<0.6	
						1				1	1

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	005	006	0	07	800	0	09
			Custon	ner ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2	at 0.25
			Sample	Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	ccred.							
2-Nitrophenol	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
3- & 4-Methylphenol	svocsw	0.1	mg/kg^	U	<1.2* D			0.2			1.1*
3-Nitroaniline	SVOCSW	0.5	mg/kg^	N	<6.1 D			<0.8			<0.6
4,6-Dinitro-2-methylphenol	svocsw	0.2	mg/kg^	N	<2.4 D			<0.3			<0.2
4-Bromophenyl-phenylether	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
4-Chloro-3-methylphenol	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
4-Chloroaniline	SVOCSW	0.5	mg/kg^	N	10.7			<0.8			3.3
4-Chlorophenol	SVOCSW	0.5	mg/kg^	U	<6.1* D			<0.8			<0.6*
4-Chlorophenyl-phenylether	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
4-Nitroaniline	SVOCSW	0.6	mg/kg^	N	<7.3 D			<0.9			<0.7
4-Nitrophenol	SVOCSW	0.5	mg/kg^	N	<6.1 p			<0.8			<0.6
Acenaphthene	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
Acenaphthylene	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
Anthracene	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			0.8*
Azobenzene	SVOCSW	0.3	mg/kg^	N	<3.6 p			<0.5			<0.3
Benzo[a]anthracene	SVOCSW	0.2	mg/kg^	U	<2.4* D			<0.3			0.3*
Benzo[a]pyrene	SVOCSW	0.2	mg/kg^	U	<2.4* D			<0.3			<0.2*
Benzo[b]fluoranthene	SVOCSW	0.2	mg/kg^	U	<2.4* D			<0.3			0.4*
Benzo[g,h,i]perylene	SVOCSW	0.5	mg/kg^	U	<6.1* D			<0.8			<0.6*

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	010	011	0	112	013	0	14
			Custon	ner ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3 a	at 0.75
			Sample	Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	ccred.							
2-Nitrophenol	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
3- & 4-Methylphenol	SVOCSW	0.1	mg/kg^	U				0.1			0.2
3-Nitroaniline	SVOCSW	0.5	mg/kg^	N				<0.6			<0.6
4,6-Dinitro-2-methylphenol	svocsw	0.2	mg/kg^	N				<0.3			<0.2
4-Bromophenyl-phenylether	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
4-Chloro-3-methylphenol	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
4-Chloroaniline	SVOCSW	0.5	mg/kg^	N				<0.6			<0.6
4-Chlorophenol	SVOCSW	0.5	mg/kg^	U				<0.6			<0.6
4-Chlorophenyl-phenylether	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
4-Nitroaniline	SVOCSW	0.6	mg/kg^	N				<0.8			<0.7
4-Nitrophenol	SVOCSW	0.5	mg/kg^	N				<0.6			<0.6
Acenaphthene	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
Acenaphthylene	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
Anthracene	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
Azobenzene	SVOCSW	0.3	mg/kg^	N				<0.4			<0.4
Benzo[a]anthracene	SVOCSW	0.2	mg/kg^	U				<0.3			<0.2
Benzo[a]pyrene	SVOCSW	0.2	mg/kg^	U				<0.3			<0.2
Benzo[b]fluoranthene	SVOCSW	0.2	mg/kg^	U				<0.3			<0.2
Benzo[g,h,i]perylene	SVOCSW	0.5	mg/kg^	U				<0.6			<0.6

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results										
			Sample ID	015		16	_	17	-	18
			Customer ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
			Sample Type	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Sampling Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Accred.							
2-Nitrophenol	SVOCSW	0.1	mg/kg^ U			<0.1		<1.1* p		<0.1
3- & 4-Methylphenol	SVOCSW	0.1	mg/kg^ U			0.2		4.5*		0.2
3-Nitroaniline	SVOCSW	0.5	mg/kg^ N			<0.7		<5.5 D		<0.6
4,6-Dinitro-2-methylphenol	svocsw	0.2	mg/kg^ N			<0.3		<2.2 p		<0.3
4-Bromophenyl-phenylether	svocsw	0.1	mg/kg^ U			<0.1		<1.1* D		<0.1
4-Chloro-3-methylphenol	svocsw	0.1	mg/kg^ U			<0.1		<1.1* D		<0.1
4-Chloroaniline	svocsw	0.5	mg/kg^ N			<0.7		15.1		<0.6
4-Chlorophenol	SVOCSW	0.5	mg/kg^ U			<0.7		<5 5* D		<0.6
4-Chlorophenyl-phenylether	SVOCSW	0.1	mg/kg^ U			<0.1		<1.1* p		<0.1
4-Nitroaniline	SVOCSW	0.6	mg/kg^ N			<0.8		<6.6 p		<0.8
4-Nitrophenol	svocsw	0.5	mg/kg^ N			<0.7		<5.5 D		<0.6
Acenaphthene	SVOCSW	0.1	mg/kg^ U			<0.1		<1.1* D		<0.1
Acenaphthylene	svocsw	0.1	mg/kg^ U			<0.1		<1.1* D		<0.1
Anthracene	svocsw	0.1	mg/kg^ U			<0.1		1.9*		<0.1
Azobenzene	SVOCSW	0.3	mg/kg^ N			<0.4		<3.3 D		<0.4
Benzo[a]anthracene	SVOCSW	0.2	mg/kg^ U			<0.3		<2 2* D		0.3
Benzo[a]pyrene	SVOCSW	0.2	mg/kg^ U			<0.3		<2 2* D		0.3
Benzo[b]fluoranthene	SVOCSW	0.2	mg/kg^ U			<0.3		2.8*		0.4
Benzo[g,h,i]perylene	SVOCSW	0.5	mg/kg^ U			<0.7		<5 5* D		<0.6
1			1 1						1	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			S	ample ID	0	19	020
			Cus	tomer ID	TP7	at 2.2	TP7 at 3.0
			San	ple Type	LPL	SOLID	SOLID
			Samp	ling Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
2-Nitrophenol	SVOCSW	0.1	mg/kg^	U		<0.1	
3- & 4-Methylphenol	SVOCSW	0.1	mg/kg^	U		<0.1	
3-Nitroaniline	SVOCSW	0.5	mg/kg^	N		<0.7	
4,6-Dinitro-2-methylphenol	SVOCSW	0.2	mg/kg^	N		<0.3	
4-Bromophenyl-phenylether	SVOCSW	0.1	mg/kg^	U		<0.1	
4-Chloro-3-methylphenol	SVOCSW	0.1	mg/kg^	U		<0.1	
4-Chloroaniline	SVOCSW	0.5	mg/kg^	N		<0.7	
4-Chlorophenol	SVOCSW	0.5	mg/kg^	U		<0.7	
4-Chlorophenyl-phenylether	SVOCSW	0.1	mg/kg^	U		<0.1	
4-Nitroaniline	SVOCSW	0.6	mg/kg^	N		<0.8	
4-Nitrophenol	SVOCSW	0.5	mg/kg^	N		<0.7	
Acenaphthene	SVOCSW	0.1	mg/kg^	U		<0.1	
Acenaphthylene	SVOCSW	0.1	mg/kg^	U		<0.1	
Anthracene	SVOCSW	0.1	mg/kg^	U		<0.1	
Azobenzene	SVOCSW	0.3	mg/kg^	N		<0.4	
Benzo[a]anthracene	SVOCSW	0.2	mg/kg^	U		<0.3	
Benzo[a]pyrene	SVOCSW	0.2	mg/kg^	U		<0.3	
Benzo[b]fluoranthene	SVOCSW	0.2	mg/kg^	U		<0.3	
Benzo[g,h,i]perylene	SVOCSW	0.5	mg/kg^	U		<0.7	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Allalysis Results											
			Sa	ample ID		001	002	003	0	04	005
			Cust	omer ID	TP4	4 at 0.2	TP4 at 0.6	TP4 at 1.2	TP4	at 1.8	TP1 at 0.2
			Samı	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Sampli	ing Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Benzo[k]fluoranthene	SVOCSW	0.2	mg/kg^	U		0.5				0.4	
Benzoic Acid	SVOCSW	0.5	mg/kg^	N		<0.6				<0.6	
Benzyl alcohol	SVOCSW	0.5	mg/kg^	U		<0.6				<0.6	
Biphenyl	svocsw	0.1	mg/kg^	U		<0.1				<0.1	
bis(2-Chloroethoxy)methane	svocsw	0.1	mg/kg^	U		<0.1				<0.1	
bis(2-Chloroethyl)ether	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
bis(2-Chloroisopropyl)ether	SVOCSW	0.5	mg/kg^	U		<0.6				<0.6	
bis(2-Ethylhexyl)phthalate	SVOCSW	0.2	mg/kg^	U		<0.2				<0.2	
Butylbenzylphthalate	SVOCSW	0.2	mg/kg^	U		<0.2				<0.2	
Carbazole	SVOCSW	0.3	mg/kg^	N		<0.3				<0.4	
Chrysene	SVOCSW	0.2	mg/kg^	U		1.0				0.8	
Coronene	SVOCSW	0.3	mg/kg^	N		<0.3				<0.4	
Dibenzo[a,h]anthracene	SVOCSW	0.5	mg/kg^	U		<0.6				<0.6	
Dibenzofuran	svocsw	0.1	mg/kg^	U		0.3				0.3	
Diethylphthalate	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
Dimethylphthalate	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
Di-n-butylphthalate	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
Di-n-octylphthalate	SVOCSW	0.2	mg/kg^	U		<0.2				<0.2	
Diphenyl ether	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	005	006		07	800		09
			Custor	ner ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2	at 0.25
			Sample	туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	ccred.							
Benzo[k]fluoranthene	SVOCSW	0.2	mg/kg^	U	<2.4* D			<0.3			<0.2*
Benzoic Acid	svocsw	0.5	mg/kg^	N	<6.1 p			<0.8			<0.6
Benzyl alcohol	SVOCSW	0.5	mg/kg^	U	<6.1* D			<0.8			<0.6*
Biphenyl	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			0.5*
bis(2-Chloroethoxy)methane	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
bis(2-Chloroethyl)ether	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
bis(2-Chloroisopropyl)ether	SVOCSW	0.5	mg/kg^	U	<6.1* D			<0.8			<0.6*
bis(2-Ethylhexyl)phthalate	SVOCSW	0.2	mg/kg^	U	<2.4* D			<0.3			<0.2*
Butylbenzylphthalate	svocsw	0.2	mg/kg^	U	<2.4* D			<0.3			<0.2*
Carbazole	SVOCSW	0.3	mg/kg^	N	<3.6 D			<0.5			<0.3
Chrysene	svocsw	0.2	mg/kg^	U	<2.4* D			<0.3			0.5*
Coronene	svocsw	0.3	mg/kg^	N	<3.6 D			<0.5			<0.3
Dibenzo[a,h]anthracene	SVOCSW	0.5	mg/kg^	U	<6.1* D			<0.8			<0.6*
Dibenzofuran	SVOCSW	0.1	mg/kg^	U	3.0*			<0.2			1.5*
Diethylphthalate	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
Dimethylphthalate	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
Di-n-butylphthalate	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
Di-n-octylphthalate	SVOCSW	0.2	mg/kg^	U	<2.4* D			<0.3			<0.2*
Diphenyl ether	svocsw	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	010	011	0	12	013	0	14
			Custon	ner ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3	at 0.75
			Sample	Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	ccred.							
Benzo[k]fluoranthene	SVOCSW	0.2	mg/kg^	U				<0.3			<0.2
Benzoic Acid	svocsw	0.5	mg/kg^	N				<0.6			<0.6
Benzyl alcohol	svocsw	0.5	mg/kg^	U				<0.6			<0.6
Biphenyl	svocsw	0.1	mg/kg^	U				<0.1			<0.1
bis(2-Chloroethoxy)methane	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
bis(2-Chloroethyl)ether	svocsw	0.1	mg/kg^	U				<0.1			<0.1
bis(2-Chloroisopropyl)ether	SVOCSW	0.5	mg/kg^	U				<0.6			<0.6
bis(2-Ethylhexyl)phthalate	SVOCSW	0.2	mg/kg^	U				<0.3			<0.2
Butylbenzylphthalate	SVOCSW	0.2	mg/kg^	U				<0.3			<0.2
Carbazole	SVOCSW	0.3	mg/kg^	N				<0.4			<0.4
Chrysene	SVOCSW	0.2	mg/kg^	U				<0.3			<0.2
Coronene	SVOCSW	0.3	mg/kg^	N				<0.4			<0.4
Dibenzo[a,h]anthracene	svocsw	0.5	mg/kg^	U				<0.6			<0.6
Dibenzofuran	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
Diethylphthalate	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
Dimethylphthalate	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
Di-n-butylphthalate	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
Di-n-octylphthalate	SVOCSW	0.2	mg/kg^	U				<0.3			<0.2
Diphenyl ether	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results											
			Sam	ple ID	015)16		17	_	18
			Custor	mer ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
			Sample	э Туре	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Sampling	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	Accred.							
Benzo[k]fluoranthene	SVOCSW	0.2	mg/kg^	U			<0.3		<2 2* D		<0.3
Benzoic Acid	SVOCSW	0.5	mg/kg^	N			<0.7		<5.5 D		<0.6
Benzyl alcohol	SVOCSW	0.5	mg/kg^	U			<0.7		<5 5* D		<0.6
Biphenyl	svocsw	0.1	mg/kg^	U			<0.1		2.1*		<0.1
bis(2-Chloroethoxy)methane	svocsw	0.1	mg/kg^	U			<0.1		<1.1* D		<0.1
bis(2-Chloroethyl)ether	svocsw	0.1	mg/kg^	U			<0.1		<1.1* D		<0.1
bis(2-Chloroisopropyl)ether	svocsw	0.5	mg/kg^	U			<0.7		<5 5* D		<0.6
bis(2-Ethylhexyl)phthalate	SVOCSW	0.2	mg/kg^	U			<0.3		<2 2* D		<0.3
Butylbenzylphthalate	SVOCSW	0.2	mg/kg^	U			<0.3		<2 2* D		<0.3
Carbazole	SVOCSW	0.3	mg/kg^	N			<0.4		<3.3 D		<0.4
Chrysene	SVOCSW	0.2	mg/kg^	U			<0.3		2.8*		0.3
Coronene	SVOCSW	0.3	mg/kg^	N			<0.4		<3.3 D		<0.4
Dibenzo[a,h]anthracene	svocsw	0.5	mg/kg^	U			<0.7		<5 5* D		<0.6
Dibenzofuran	svocsw	0.1	mg/kg^	U			<0.1		6.3*		0.1
Diethylphthalate	svocsw	0.1	mg/kg^	U			<0.1		<1.1* D		<0.1
Dimethylphthalate	svocsw	0.1	mg/kg^	U			<0.1		<1.1* D		<0.1
Di-n-butylphthalate	SVOCSW	0.1	mg/kg^	U			<0.1		<1.1* p		<0.1
Di-n-octylphthalate	SVOCSW	0.2	mg/kg^	U			<0.3		<2 2* D		<0.3
Diphenyl ether	SVOCSW	0.1	mg/kg^	U			<0.1		<1.1* D		<0.1

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sa	imple ID	0	19	020
			Cust	omer ID	TP7	at 2.2	TP7 at 3.0
			Sam	ole Type	LPL	SOLID	SOLID
			Sampl	ng Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
Benzo[k]fluoranthene	SVOCSW	0.2	mg/kg^	U		<0.3	
Benzoic Acid	SVOCSW	0.5	mg/kg^	N		<0.7	
Benzyl alcohol	SVOCSW	0.5	mg/kg^	U		<0.7	
Biphenyl	SVOCSW	0.1	mg/kg^	U		<0.1	
bis(2-Chloroethoxy)methane	SVOCSW	0.1	mg/kg^	U		<0.1	
bis(2-Chloroethyl)ether	SVOCSW	0.1	mg/kg^	U		<0.1	
bis(2-Chloroisopropyl)ether	SVOCSW	0.5	mg/kg^	U		<0.7	
bis(2-Ethylhexyl)phthalate	SVOCSW	0.2	mg/kg^	U		<0.3	
Butylbenzylphthalate	SVOCSW	0.2	mg/kg^	U		<0.3	
Carbazole	SVOCSW	0.3	mg/kg^	N		<0.4	
Chrysene	SVOCSW	0.2	mg/kg^	U		<0.3	
Coronene	SVOCSW	0.3	mg/kg^	N		<0.4	
Dibenzo[a,h]anthracene	SVOCSW	0.5	mg/kg^	U		<0.7	
Dibenzofuran	SVOCSW	0.1	mg/kg^	U		<0.1	
Diethylphthalate	SVOCSW	0.1	mg/kg^	U		<0.1	
Dimethylphthalate	SVOCSW	0.1	mg/kg^	U		<0.1	
Di-n-butylphthalate	SVOCSW	0.1	mg/kg^	U		<0.1	
Di-n-octylphthalate	SVOCSW	0.2	mg/kg^	U		<0.3	
Diphenyl ether	SVOCSW	0.1	mg/kg^	U		<0.1	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results											
			Sa	mple ID	(001	002	003	0	04	005
			Custo	omer ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4	at 1.8	TP1 at 0.2
			Samp	ole Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Samplii	ng Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Fluoranthene	SVOCSW	0.2	mg/kg^	U		1.8				1.5	
Fluorene	SVOCSW	0.2	mg/kg^	U		<0.2				<0.2	
Hexachlorobenzene	svocsw	0.1	mg/kg^	U		<0.1				<0.1	
Hexachlorobutadiene	svocsw	0.1	mg/kg^	N		<0.1				<0.1	
Hexachlorocyclopentadiene	svocsw	0.1	mg/kg^	N		<0.1				<0.1	
Hexachloroethane	SVOCSW	0.1	mg/kg^	U		<0.1				<0.1	
Indeno[1,2,3-cd]pyrene	SVOCSW	0.5	mg/kg^	U		0.7				<0.6	
Isophorone	SVOCSW	0.1	mg/kg^	N		<0.1				<0.1	
Naphthalene	SVOCSW	0.1	mg/kg^	U		0.8				0.8	
Nitrobenzene	SVOCSW	0.5	mg/kg^	U		<0.6				<0.6	
N-Nitroso-di-n-propylamine	svocsw	0.9	mg/kg^	N		<1.0				<1.1	
N-Nitrosodiphenylamine	svocsw	0.1	mg/kg^	N		<0.1				<0.1	
Pentachlorophenol	svocsw	0.5	mg/kg^	N		<0.6				<0.6	
Phenanthrene	svocsw	0.1	mg/kg^	U		1.1				1.3	
Phenol	svocsw	0.1	mg/kg^	U		<0.1				<0.1	
Pyrene	svocsw	0.2	mg/kg^	U		1.6				1.3	
>C10-C12 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U	IS*				IS*		IS*
>C12-C16 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U	IS*				IS*		IS*
>C16-C21 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U	IS*				IS*		IS*
						- I	1	1	1	1	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	005	006	0	07	008	0	09
			Custor	mer ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2	at 0.25
			Sample	туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	ccred.							
Fluoranthene	SVOCSW	0.2	mg/kg^	U	<2.4* D			<0.3			0.7*
Fluorene	svocsw	0.2	mg/kg^	U	<2.4* D			<0.3			<0.2*
Hexachlorobenzene	svocsw	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
Hexachlorobutadiene	SVOCSW	0.1	mg/kg^	N	<1.2 p			<0.2			<0.1
Hexachlorocyclopentadiene	SVOCSW	0.1	mg/kg^	N	<1.2 D			<0.2			<0.1
Hexachloroethane	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
Indeno[1,2,3-cd]pyrene	SVOCSW	0.5	mg/kg^	U	<6.1* D			<0.8			<0.6*
Isophorone	svocsw	0.1	mg/kg^	N	<1.2 D			<0.2			<0.1
Naphthalene	svocsw	0.1	mg/kg^	U	9.9*			<0.2			3.2*
Nitrobenzene	svocsw	0.5	mg/kg^	U	<6.1* D			<0.8			<0.6*
N-Nitroso-di-n-propylamine	svocsw	0.9	mg/kg^	N	<10.9 D			<1.4			<1.0
N-Nitrosodiphenylamine	svocsw	0.1	mg/kg^	N	<1.2 D			<0.2			<0.1
Pentachlorophenol	SVOCSW	0.5	mg/kg^	N	<6.1 D			<0.8			<0.6
Phenanthrene	SVOCSW	0.1	mg/kg^	U	4.4*			<0.2			3.1*
Phenol	SVOCSW	0.1	mg/kg^	U	<1.2* D			<0.2			<0.1*
Pyrene	SVOCSW	0.2	mg/kg^	U	<2.4* D			<0.3			0.6*
>C10-C12 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U			IS*			IS*	
>C12-C16 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U			IS*			IS*	
>C16-C21 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U			IS*			IS*	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	010	011	0	12	013	0	14
			Custor	mer ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3 a	at 0.75
			Sample	туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	ccred.							
Fluoranthene	SVOCSW	0.2	mg/kg^	U				<0.3			<0.2
Fluorene	svocsw	0.2	mg/kg^	U				<0.3			<0.2
Hexachlorobenzene	svocsw	0.1	mg/kg^	U				<0.1			<0.1
Hexachlorobutadiene	SVOCSW	0.1	mg/kg^	N				<0.1			<0.1
Hexachlorocyclopentadiene	SVOCSW	0.1	mg/kg^	N				<0.1			<0.1
Hexachloroethane	SVOCSW	0.1	mg/kg^	U				<0.1			<0.1
Indeno[1,2,3-cd]pyrene	svocsw	0.5	mg/kg^	U				<0.6			<0.6
Isophorone	svocsw	0.1	mg/kg^	N				<0.1			<0.1
Naphthalene	svocsw	0.1	mg/kg^	U				<0.1			<0.1
Nitrobenzene	svocsw	0.5	mg/kg^	U				<0.6			<0.6
N-Nitroso-di-n-propylamine	svocsw	0.9	mg/kg^	N				<1.1			<1.1
N-Nitrosodiphenylamine	svocsw	0.1	mg/kg^	N				<0.1			<0.1
Pentachlorophenol	svocsw	0.5	mg/kg^	N				<0.6			<0.6
Phenanthrene	svocsw	0.1	mg/kg^	U				<0.1			<0.1
Phenol	svocsw	0.1	mg/kg^	U				<0.1			<0.1
Pyrene	svocsw	0.2	mg/kg^	U				<0.3			<0.2
>C10-C12 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U			IS*			IS*	
>C12-C16 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U			IS*			IS*	
>C16-C21 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U			IS*			IS*	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sample ID	015	0	16	0	17	0	18
			Customer ID	TP3 at 1.8		at 2.9		at 0.2		at 0.9
			Sample Type	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Sampling Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Accred.							
Fluoranthene	SVOCSW	0.2	mg/kg^ U			<0.3		3.0*		0.5
Fluorene	SVOCSW	0.2	mg/kg^ U			<0.3		<2 2* D		<0.3
Hexachlorobenzene	SVOCSW	0.1	mg/kg^ U			<0.1		<1.1* D		<0.1
Hexachlorobutadiene	SVOCSW	0.1	mg/kg^ N			<0.1		<1.1 D		<0.1
Hexachlorocyclopentadiene	SVOCSW	0.1	mg/kg^ N			<0.1		<1.1 D		<0.1
Hexachloroethane	SVOCSW	0.1	mg/kg^ U			<0.1		<1.1* D		<0.1
Indeno[1,2,3-cd]pyrene	SVOCSW	0.5	mg/kg^ U			<0.7		<5 5* D		<0.6
Isophorone	SVOCSW	0.1	mg/kg^ N			<0.1		<1.1 p		<0.1
Naphthalene	SVOCSW	0.1	mg/kg^ U			<0.1		14.3*		0.2
Nitrobenzene	SVOCSW	0.5	mg/kg^ U			<0.7		<5 5* D		<0.6
N-Nitroso-di-n-propylamine	SVOCSW	0.9	mg/kg^ N			<1.2		<9.9 D		<1.1
N-Nitrosodiphenylamine	SVOCSW	0.1	mg/kg^ N			<0.1		<1.1 p		<0.1
Pentachlorophenol	SVOCSW	0.5	mg/kg^ N			<0.7		<5.5 D		<0.6
Phenanthrene	SVOCSW	0.1	mg/kg^ U			<0.1		11.0*		0.5
Phenol	SVOCSW	0.1	mg/kg^ U			<0.1		2.1*		<0.1
Pyrene	SVOCSW	0.2	mg/kg^ U			<0.3		3.1*		0.4
>C10-C12 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l U		IS*		IS*		IS*	
>C12-C16 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l U		IS*		IS*		IS*	
>C16-C21 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l U		IS*		IS*		IS*	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			s	ample ID	C	119	020
			Cus	tomer ID	TP7	at 2.2	TP7 at 3.0
			Sam	ple Type	LPL	SOLID	SOLID
			Samp	ling Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
Fluoranthene	SVOCSW	0.2	mg/kg^	U		<0.3	
Fluorene	SVOCSW	0.2	mg/kg^	U		<0.3	
Hexachlorobenzene	SVOCSW	0.1	mg/kg^	U		<0.1	
Hexachlorobutadiene	SVOCSW	0.1	mg/kg^	N		<0.1	
Hexachlorocyclopentadiene	SVOCSW	0.1	mg/kg^	N		<0.1	
Hexachloroethane	SVOCSW	0.1	mg/kg^	U		<0.1	
Indeno[1,2,3-cd]pyrene	SVOCSW	0.5	mg/kg^	U		<0.7	
Isophorone	SVOCSW	0.1	mg/kg^	N		<0.1	
Naphthalene	SVOCSW	0.1	mg/kg^	U		<0.1	
Nitrobenzene	SVOCSW	0.5	mg/kg^	U		<0.7	
N-Nitroso-di-n-propylamine	SVOCSW	0.9	mg/kg^	N		<1.2	
N-Nitrosodiphenylamine	SVOCSW	0.1	mg/kg^	N		<0.1	
Pentachlorophenol	SVOCSW	0.5	mg/kg^	N		<0.7	
Phenanthrene	SVOCSW	0.1	mg/kg^	U		<0.1	
Phenol	SVOCSW	0.1	mg/kg^	U		<0.1	
Pyrene	SVOCSW	0.2	mg/kg^	U		<0.3	
>C10-C12 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U	IS*		
>C12-C16 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U	IS*		
>C16-C21 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U	IS*		

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results											
			Sa	mple ID	(001	002	003	0	04	005
			Custo	omer ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4	at 1.8	TP1 at 0.2
			Samp	ole Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Samplii	ng Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
>C21-C35 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U	IS*				IS*		IS*
Total TPH >C8-C40 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U	IS*				IS*		IS*
>C10-C12 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^	U		<4.57* _B				<4.85* в	
>C12-C16 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^	U		5.23				5.58	
>C16-C21 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^	U		21.3				25.0	
>C21-C35 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	10	mg/kg^	U		116				119	
Total TPH >C8-C40 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	20	mg/kg^	U		159				162	
>C10-C12 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*				IS*		IS*
>C12-C16 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*				IS*		IS*
>C16-C21 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*				IS*		IS*
>C21-C35 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*				IS*		IS*
Total TPH >C8-C40 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*				IS*		IS*
>C10-C12 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^	U		<4.57				<4.85	
>C12-C16 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^	U		7.94				<4.85	
>C16-C21 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^	U		20.0* в				15.2* в	
>C21-C35 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	10	mg/kg^	U		102				84.2	
Total TPH >C8-C40 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	20	mg/kg^	U		153				114	
>C10-C12 EH_1D_Total	TPHFID	0.01	mg/l	U	IS*				IS*		IS*
>C12-C16 EH_1D_Total	TPHFID	0.01	mg/l	U	IS*				IS*		IS*

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sampl	le ID	005	006	0	07	008	0	09
			Custome	er ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2 a	at 0.25
			Sample 1	Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling I	Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Ac	cred.							
>C21-C35 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U			IS*			IS*	
Total TPH >C8-C40 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U			IS*			IS*	
>C10-C12 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^	U	11.1* в			<6.11* в			8.77* в
>C12-C16 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^	U	24.3*			<6.11			22.9*
>C16-C21 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^	U	42.1*			<6.11			36.6*
>C21-C35 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	10	mg/kg^	U	47.1*			<15.3			123*
Total TPH >C8-C40 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	20	mg/kg^	U	144*			<30.5			213*
>C10-C12 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U			IS*			IS*	
>C12-C16 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U			IS*			IS*	
>C16-C21 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U			IS*			IS*	
>C21-C35 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U			IS*			IS*	
Total TPH >C8-C40 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U			IS*			IS*	
>C10-C12 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^	U	8.73*			<6.11			5.75*
>C12-C16 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^	U	75.2*			<6.11			35.2*
>C16-C21 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^	U	76.9* в			<6.11* в			83.6* в
>C21-C35 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	10	mg/kg^	U	91.8*			17.0			180*
Total TPH >C8-C40 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	20	mg/kg^	U	270*			<30.5			325*
>C10-C12 EH_1D_Total	TPHFID	0.01	mg/l	U			IS*			IS*	
>C12-C16 EH_1D_Total	TPHFID	0.01	mg/l	U			IS*			IS*	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sample ID	010	011	0	12	013	0	14
			Customer ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3 a	at 0.75
			Sample Type	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Accred.							
>C21-C35 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l U			IS*			IS*	
Total TPH >C8-C40 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l U			IS*			IS*	
>C10-C12 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^ U				<5.03* в			<4.72* в
>C12-C16 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^ U				<5.03			<4.72
>C16-C21 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^ U				<5.03			<4.72
>C21-C35 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	10	mg/kg^ U				<12.6			<11.8
Total TPH >C8-C40 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	20	mg/kg^ U				<25.1			<23.6
>C10-C12 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l U			IS*			IS*	
>C12-C16 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l U			IS*			IS*	
>C16-C21 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l U			IS*			IS*	
>C21-C35 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l U			IS*			IS*	
Total TPH >C8-C40 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l U			IS*			IS*	
>C10-C12 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^ U				<5.03			<4.72
>C12-C16 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^ U				<5.03			<4.72
>C16-C21 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^ U				<5.03* в			<4.72* в
>C21-C35 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	10	mg/kg^ U				<12.6			<11.8
Total TPH >C8-C40 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	20	mg/kg^ U				<25.1			<23.6
C10-C12 EH_1D_Total	TPHFID	0.01	mg/l U			IS*			IS*	
>C12-C16 EH_1D_Total	TPHFID	0.01	mg/l U			IS*			IS*	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sample ID	015	0	16	0	17	0	18
			Customer ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
			Sample Type	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Sampling Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Accred.							
>C21-C35 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l U		IS*		IS*		IS*	
Total TPH >C8-C40 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l U		IS*		IS*		IS*	
>C10-C12 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^ U			<5.51* в		9.83* в		<5.06* в
>C12-C16 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^ U			<5.51		30.1*		<5.06
>C16-C21 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^ U			5.97		76.2*		<5.06
>C21-C35 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	10	mg/kg^ U			<13.8		180*		<12.7
Total TPH >C8-C40 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	20	mg/kg^ U			<27.5		319*		<25.3
>C10-C12 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l U		IS*		IS*		IS*	
>C12-C16 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l U		IS*		IS*		IS*	
>C16-C21 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l U		IS*		IS*		IS*	
>C21-C35 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l U		IS*		IS*		IS*	
Total TPH >C8-C40 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l U		IS*		IS*		IS*	
>C10-C12 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^ U			<5.51		10.9*		<5.06
>C12-C16 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^ U			<5.51		85.4*		<5.06
>C16-C21 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^ U			<5.51* в		201* в		<5.06* в
>C21-C35 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	10	mg/kg^ U			20.1		327*		20.4
Total TPH >C8-C40 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	20	mg/kg^ U			34.9		649*		31.2
>C10-C12 EH_1D_Total	TPHFID	0.01	mg/l U		IS*		IS*		IS*	
>C12-C16 EH_1D_Total	TPHFID	0.01	mg/l U		IS*		IS*		IS*	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sa	imple ID	O	19	020
			Cust	omer ID	TP7	at 2.2	TP7 at 3.0
			Samı	ole Type	LPL	SOLID	SOLID
			Sampli	ng Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
>C21-C35 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U	IS*		
Total TPH >C8-C40 (Aliphatic) EH_CU_1D_AL	TPHFID (Aliphatic)	0.01	mg/l	U	IS*		
>C10-C12 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^	U		<5.24* в	
>C12-C16 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^	U		<5.24	
>C16-C21 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	4	mg/kg^	U		<5.24	
>C21-C35 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	10	mg/kg^	U		<13.1	
Total TPH >C8-C40 (Aliphatic) EH_CU_1D_AL	TPHFIDUS (Aliphatic)	20	mg/kg^	U		<26.2	
>C10-C12 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*		
>C12-C16 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*		
>C16-C21 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*		
>C21-C35 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*		
Total TPH >C8-C40 (Aromatic) EH_CU_1D_AR	TPHFID (Aromatic)	0.01	mg/l	U	IS*		
>C10-C12 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^	U		<5.24	
>C12-C16 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^	U		<5.24	
>C16-C21 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	4	mg/kg^	U		<5.24* в	
>C21-C35 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	10	mg/kg^	U		<13.1	
Total TPH >C8-C40 (Aromatic) EH_CU_1D_AR	TPHFIDUS (Aromatic)	20	mg/kg^	U		<26.2	
>C10-C12 EH_1D_Total	TPHFID	0.01	mg/l	U	IS*		
>C12-C16 EH_1D_Total	TPHFID	0.01	mg/l	U	IS*		

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sa	ample ID	C	001	002	003	0	04	005
			Cust	tomer ID		at 0.2	TP4 at 0.6	TP4 at 1.2		at 1.8	TP1 at 0.2
			Samr	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
				ing Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	-	Accred.							
>C16-C21 EH_1D_Total	TPHFID	0.01	mg/l	U	IS*				IS*		IS*
>C21-C35 EH_1D_Total	TPHFID	0.01	mg/l	U	IS*				IS*		IS*
>C8-C10 EH_1D_Total	TPHFID	0.01	mg/l	U	IS*				IS*		IS*
Total TPH >C8-C40 EH_1D_Total	TPHFID	0.01	mg/l	U	IS*				IS*		IS*
1,1,1,2-Tetrachloroethane	VOCHSAW	1	μg/l	N	<1				<1		<5 D
1,1,1-Trichloroethane	VOCHSAW	1	µg/l	N	<1				<1		<5 D
1,1,2,2-Tetrachloroethane	VOCHSAW	1	µg/l	N	<1				<1		<5 D
1,1,2-Trichloroethane	VOCHSAW	1	μg/l	N	<1				<1		<5 D
1,1-Dichloroethane	VOCHSAW	1	μg/l	N	<1				<1		<5 D
1,1-Dichloroethene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
1,1-Dichloropropene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
1,2,3-Trichlorobenzene	VOCHSAW	5	μg/l	N	<5				<5		<25 D
1,2,3-Trichloropropane	VOCHSAW	1	μg/l	N	<1				<1		<5 D
1,2,4-Trichlorobenzene	VOCHSAW	5	μg/l	N	<5				<5		<25 D
1,2,4-Trimethylbenzene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
1,2-Dibromo-3-chloropropane	VOCHSAW	5	μg/l	N	<5				<5		<25 D
1,2-Dibromoethane	VOCHSAW	1	μg/l	N	<1				<1		<5 D
1,2-Dichlorobenzene	VOCHSAW	5	μg/l	N	<5				<5		<25 D
1,2-Dichloroethane	VOCHSAW	1	μg/l	N	<1				<1		<5 D

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results			Sample	ID	005	006	00	Λ 7	008	1	09
			Gumpio				-				
			Customer	ID	TP1 at 0.2	TP1 at 0.6	IP1	at 2.0	TP1 at 3.0	192 8	at 0.25
			Sample Ty	ре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling D	ate 2	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Acc	ed.							
>C16-C21 EH_1D_Total	TPHFID	0.01	mg/l	U			IS*			IS*	
>C21-C35 EH_1D_Total	TPHFID	0.01	mg/l	U			IS*			IS*	
>C8-C10 EH_1D_Total	TPHFID	0.01	mg/l	U			IS*			IS*	
Total TPH >C8-C40 EH_1D_Total	TPHFID	0.01	mg/l	U			IS*			IS*	
1,1,1,2-Tetrachloroethane	VOCHSAW	1	μg/l	N			<1			<5 D	
1,1,1-Trichloroethane	VOCHSAW	1	μg/l	N			<1			<5 D	
1,1,2,2-Tetrachloroethane	VOCHSAW	1	μg/l	N			<1			<5 D	
1,1,2-Trichloroethane	VOCHSAW	1	μg/l	N			<1			<5 D	
1,1-Dichloroethane	VOCHSAW	1	μg/l	N			<1			<5 D	
1,1-Dichloroethene	VOCHSAW	1	μg/l	N			<1			<5 D	
1,1-Dichloropropene	VOCHSAW	1	μg/l	N			<1			<5 D	
1,2,3-Trichlorobenzene	VOCHSAW	5	μg/l	N			<5			<25 D	
1,2,3-Trichloropropane	VOCHSAW	1	μg/l	N			<1			<5 D	
1,2,4-Trichlorobenzene	VOCHSAW	5	μg/l	N			<5			<25 D	
1,2,4-Trimethylbenzene	VOCHSAW	1	μg/l	N			<1			<5 D	
1,2-Dibromo-3-chloropropane	VOCHSAW	5	μg/l	N			<5			<25 D	
1,2-Dibromoethane	VOCHSAW	1	μg/l	N			<1			<5 D	
1,2-Dichlorobenzene	VOCHSAW	5	μg/l	N			<5			<25 D	
1,2-Dichloroethane	VOCHSAW	1	μg/l	N			<1			<5 D	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sampl	e ID	010	011	0	12	013	0.	14
			Custome	r ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3 a	t 0.75
			Sample T	уре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling D	ate	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Acc	red.							
C16-C21 H_1D_Total	TPHFID	0.01	mg/l	U			IS*			IS*	
C21-C35 H_1D_Total	TPHFID	0.01	mg/l	U			IS*			IS*	
C8-C10 H_1D_Total	TPHFID	0.01	mg/l	U			IS*			IS*	
otal TPH >C8-C40 H_1D_Total	TPHFID	0.01	mg/l	U			IS*			IS*	
,1,1,2-Tetrachloroethane	VOCHSAW	1	μg/l	N			<1			<1	
,1,1-Trichloroethane	VOCHSAW	1	μg/l	N			<1			<1	
,1,2,2-Tetrachloroethane	VOCHSAW	1	µg/l	N			<1			<1	
,1,2-Trichloroethane	VOCHSAW	1	μg/l	N			<1			<1	
,1-Dichloroethane	VOCHSAW	1	μg/l	N			<1			<1	
,1-Dichloroethene	VOCHSAW	1	μg/l	N			<1			<1	
,1-Dichloropropene	VOCHSAW	1	μg/l	N			<1			<1	
,2,3-Trichlorobenzene	VOCHSAW	5	μg/l	N			<5			<5	
,2,3-Trichloropropane	VOCHSAW	1	μg/l	N			<1			<1	
2,4-Trichlorobenzene	VOCHSAW	5	μg/l	N			<5			<5	
2,4-Trimethylbenzene	VOCHSAW	1	μg/l	N			<1			<1	
,2-Dibromo-3-chloropropane	VOCHSAW	5	μg/l	N			<5			<5	
2-Dibromoethane	VOCHSAW	1	μg/l	N			<1			<1	
2-Dichlorobenzene	VOCHSAW	5	μg/l	N			<5			<5	
,2-Dichloroethane	VOCHSAW	1	µg/l	N			<1			<1	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sample ID	015	0	16	0	17	0	18
			Customer ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
			Sample Type	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Sampling Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Accred.							
·C16-C21 H_1D_Total	TPHFID	0.01	mg/l U		IS*		IS*		IS*	
C21-C35 H_1D_Total	TPHFID	0.01	mg/l U		IS*		IS*		IS*	
C8-C10 H_1D_Total	TPHFID	0.01	mg/l U		IS*		IS*		IS*	
otal TPH >C8-C40 H_1D_Total	TPHFID	0.01	mg/l U		IS*		IS*		IS*	
,1,1,2-Tetrachloroethane	VOCHSAW	1	μg/l N		<5 D		<1		<1	
,1,1-Trichloroethane	VOCHSAW	1	μg/l N		<5 D		<1		<1	
,1,2,2-Tetrachloroethane	VOCHSAW	1	μg/l N		<5 D		<1		<1	
,1,2-Trichloroethane	VOCHSAW	1	μg/l N		<5 D		<1		<1	
,1-Dichloroethane	VOCHSAW	1	μg/l N		<5 D		<1		<1	
,1-Dichloroethene	VOCHSAW	1	μg/l N		<5 D		<1		<1	
1-Dichloropropene	VOCHSAW	1	μg/l N		<5 D		<1		<1	
,2,3-Trichlorobenzene	VOCHSAW	5	μg/l N		<25 D		<5		<5	
,2,3-Trichloropropane	VOCHSAW	1	μg/l N		<5 D		<1		<1	
2,4-Trichlorobenzene	VOCHSAW	5	μg/l N		<25 D		<5		<5	
2,4-Trimethylbenzene	VOCHSAW	1	μg/l N		<5 D		<1		<1	
2-Dibromo-3-chloropropane	VOCHSAW	5	μg/l N		<25 D		<5		<5	
2-Dibromoethane	VOCHSAW	1	μg/l N		<5 D		<1		<1	
2-Dichlorobenzene	VOCHSAW	5	μg/l N		<25 D		<5		<5	
,2-Dichloroethane	VOCHSAW	1	μg/l N		<5 p		<1		<1	

Project Name: Imingham Dock

Project No: 22052067

Date Issued: 22/06/2022

			Sai	mple ID	0	19	020
			Custo	omer ID	TP7	at 2.2	TP7 at 3.0
			Samp	le Type	LPL	SOLID	SOLID
			Samplir	· ·	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL		Accred.			
C16-C21 EH_1D_Total	TPHFID	0.01	mg/l	U	IS*		
C21-C35 H_1D_Total	TPHFID	0.01	mg/l	U	IS*		
-C8-C10 H_1D_Total	TPHFID	0.01	mg/l	U	IS*		
Total TPH >C8-C40 H_1D_Total	TPHFID	0.01	mg/l	U	IS*		
,1,1,2-Tetrachloroethane	VOCHSAW	1	μg/l	N	<1		
1,1,1-Trichloroethane	VOCHSAW	1	µg/l	N	<1		
,1,2,2-Tetrachloroethane	VOCHSAW	1	µg/l	N	<1		
1,1,2-Trichloroethane	VOCHSAW	1	µg/l	N	<1		
,1-Dichloroethane	VOCHSAW	1	µg/l	N	<1		
,1-Dichloroethene	VOCHSAW	1	µg/l	N	<1		
,1-Dichloropropene	VOCHSAW	1	μg/l	N	<1		
,2,3-Trichlorobenzene	VOCHSAW	5	μg/l	N	<5		
,2,3-Trichloropropane	VOCHSAW	1	μg/l	N	<1		
,2,4-Trichlorobenzene	VOCHSAW	5	μg/l	N	<5		
,2,4-Trimethylbenzene	VOCHSAW	1	μg/l	N	<1		
,2-Dibromo-3-chloropropane	VOCHSAW	5	μg/l	N	<5		
,2-Dibromoethane	VOCHSAW	1	µg/l	N	<1		
,2-Dichlorobenzene	VOCHSAW	5	μg/l	N	<5		
1,2-Dichloroethane	VOCHSAW	1	μg/l	N	<1		

Page 82 of 120

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results											
			Sa	mple ID	C	001	002	003	0	04	005
			Custo	omer ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4	at 1.8	TP1 at 0.2
			Samp	ole Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Sampli	ng Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
1,2-Dichloropropane	VOCHSAW	1	μg/l	N	<1				<1		<5 D
1,3,5-Trimethylbenzene	VOCHSAW	0.6	μg/l	N	<0.6				<0.6		<3.0 D
1,3-Dichlorobenzene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
1,3-Dichloropropane	VOCHSAW	1	μg/l	N	<1				<1		<5 D
1,4-Dichlorobenzene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
2,2-Dichloropropane	VOCHSAW	1	μg/l	N	<1				<1		<5 D
2-Chlorotoluene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
4-Chlorotoluene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
Benzene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
Bromobenzene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
Bromochloromethane	VOCHSAW	1	μg/l	N	<1				<1		<5 D
Bromodichloromethane	VOCHSAW	1	μg/l	N	<1				<1		<5 D
Bromoform	VOCHSAW	1	µg/l	N	<1				<1		<5 D
Bromomethane	VOCHSAW	5	µg/l	N	<5				<5		<25 D
Carbon Tetrachloride	VOCHSAW	1	μg/l	N	<1				<1		<5 D
Chlorobenzene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
Chloroethane	VOCHSAW	5	μg/l	N	<5				<5		<25 D
Chloroform	VOCHSAW	5	μg/l	N	<5				<5		<25 D
Chloromethane	VOCHSAW	1	μg/l	N	<1				<1		<5 D

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results										
			Sample	D 005	006	(007	800	0	09
			Customer	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2 a	at 0.25
			Sample Ty	oe SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling Da	te 23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Acci	ed.						
1,2-Dichloropropane	VOCHSAW	1	μg/l	N		<1			<5 D	
1,3,5-Trimethylbenzene	VOCHSAW	0.6	μg/l	N		<0.6			<3.0 p	
1,3-Dichlorobenzene	VOCHSAW	1	μg/l	N		<1			<5 D	
1,3-Dichloropropane	VOCHSAW	1	μg/l	N		<1			<5 D	
1,4-Dichlorobenzene	VOCHSAW	1	μg/l	N		<1			<5 D	
2,2-Dichloropropane	VOCHSAW	1	μg/l	N		<1			<5 D	
2-Chlorotoluene	VOCHSAW	1	μg/l	N		<1			<5 D	
4-Chlorotoluene	VOCHSAW	1	μg/l	N		<1			<5 D	
Benzene	VOCHSAW	1	μg/l	N		<1			<5 D	
Bromobenzene	VOCHSAW	1	μg/l	N		<1			<5 D	
Bromochloromethane	VOCHSAW	1	μg/l	N		<1			<5 D	
Bromodichloromethane	VOCHSAW	1	μg/l	N		<1			<5 D	
Bromoform	VOCHSAW	1	μg/l	N		<1			<5 D	
Bromomethane	VOCHSAW	5	μg/l	N		<5			<25 D	
Carbon Tetrachloride	VOCHSAW	1	μg/l	N		<1			<5 D	
Chlorobenzene	VOCHSAW	1	μg/l	N		<1			<5 D	
Chloroethane	VOCHSAW	5	μg/l	N		<5			<25 D	
Chloroform	VOCHSAW	5	μg/l	N		<5			<25 D	
Chloromethane	VOCHSAW	1	μg/l	N		<1			<5 D	
			1	1		1		1		I

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results											
			San	nple ID	010	011	0	12	013	0	14
			Custo	mer ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3 a	at 0.75
			Sampl	e Type	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samplin	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
1,2-Dichloropropane	VOCHSAW	1	μg/l	N			<1			<1	
1,3,5-Trimethylbenzene	VOCHSAW	0.6	μg/l	N			<0.6			<0.6	
1,3-Dichlorobenzene	VOCHSAW	1	μg/l	N			<1			<1	
1,3-Dichloropropane	VOCHSAW	1	μg/l	N			<1			<1	
1,4-Dichlorobenzene	VOCHSAW	1	μg/l	N			<1			<1	
2,2-Dichloropropane	VOCHSAW	1	μg/l	N			<1			<1	
2-Chlorotoluene	VOCHSAW	1	μg/l	N			<1			<1	
4-Chlorotoluene	VOCHSAW	1	μg/l	N			<1			<1	
Benzene	VOCHSAW	1	μg/l	N			<1			<1	
Bromobenzene	VOCHSAW	1	μg/l	N			<1			<1	
Bromochloromethane	VOCHSAW	1	μg/l	N			<1			<1	
Bromodichloromethane	VOCHSAW	1	μg/l	N			<1			<1	
Bromoform	VOCHSAW	1	μg/l	N			<1			<1	
Bromomethane	VOCHSAW	5	μg/l	N			<5			<5	
Carbon Tetrachloride	VOCHSAW	1	μg/l	N			<1			<1	
Chlorobenzene	VOCHSAW	1	μg/l	N			<1			<1	
Chloroethane	VOCHSAW	5	μg/l	N			<5			<5	
Chloroform	VOCHSAW	5	μg/l	N			<5			<5	
Chloromethane	VOCHSAW	1	μg/l	N			<1			<1	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			nple ID	015		16	0	17	0	18
		Custo							1	. •
		Gusto	mer ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
		Sample	е Туре	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
		Sampling	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Method Code	MDL	Units A	Accred.							
VOCHSAW	1	μg/l	N		<5 D		<1		<1	
VOCHSAW	0.6	μg/l	N		<3.0 p		<0.6		<0.6	
VOCHSAW	1	μg/l	N		<5 D		<1		<1	
VOCHSAW	1	μg/l	N		<5 D		<1		<1	
VOCHSAW	1	µg/l	N		<5 D		<1		<1	
VOCHSAW	1	μg/l	N		<5 D		<1		<1	
VOCHSAW	1	μg/l	N		<5 D		<1		<1	
VOCHSAW	1	μg/l	N		<5 D		<1		<1	
VOCHSAW	1	μg/l	N		<5 D		<1		<1	
VOCHSAW	1	μg/l	N		<5 D		<1		<1	
VOCHSAW	1	μg/l	N		<5 D		<1		<1	
VOCHSAW	1	μg/l	N		<5 D		<1		<1	
VOCHSAW	1	μg/l	N		<5 D		<1		<1	
VOCHSAW	5	μg/l	N		<25 D		<5		<5	
VOCHSAW	1	μg/l	N		<5 D		<1		<1	
VOCHSAW	1	μg/l	N		<5 D		<1		<1	
VOCHSAW	5	μg/l	N		<25 D		<5		<5	
VOCHSAW	5	μg/l	N		<25 D		<5		<5	
VOCHSAW	1	μg/l	N		<5 D		<1		<1	
	VOCHSAW VOCHSAW	VOCHSAW 1 VOCHSAW 0.6 VOCHSAW 1 VOCHSAW 5 VOCHSAW 1 VOCHSAW 1 VOCHSAW 1 VOCHSAW 5 VOCHSAW 5 VOCHSAW 5	VOCHSAW 1 μg/l VOCHSAW 0.6 μg/l VOCHSAW 1 μg/l VOCHSAW 5 μg/l VOCHSAW 1 μg/l VOCHSAW 1 μg/l VOCHSAW 5 μg/l VOCHSAW 5 μg/l VOCHSAW 5 μg/l VOCHSAW 5 μg/l	VOCHSAW 1 µg/l N VOCHSAW 0.6 µg/l N VOCHSAW 1 µg/l N VOCHSAW 5 µg/l N VOCHSAW 1 µg/l N VOCHSAW 5 µg/l N VOCHSAW 5 µg/l N VOCHSAW 5 µg/l N	VOCHSAW 1 μg/l N VOCHSAW 0.6 μg/l N VOCHSAW 1 μg/l N VOCHSAW 5 μg/l N VOCHSAW 5 μg/l N	VOCHSAW 1 µg/I N <5 D	VOCHSAW 1 µg/l N <5 p	VOCHSAW 1 µgf N <5 p	VOCHSAW 1 µg/l N <5 b	VOCHSAW

Project Name: Imingham Dock

Project No: 22052067

Date Issued: 22/06/2022

			Sa	imple ID	0.	19	020
			Cus	omer ID	TP7	at 2.2	TP7 at 3.0
			Sam	ple Type	LPL	SOLID	SOLID
				ing Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
1,2-Dichloropropane	VOCHSAW	1	μg/l	N	<1		
1,3,5-Trimethylbenzene	VOCHSAW	0.6	μg/l	N	<0.6		
1,3-Dichlorobenzene	VOCHSAW	1	µg/l	N	<1		
1,3-Dichloropropane	VOCHSAW	1	μg/l	N	<1		
1,4-Dichlorobenzene	VOCHSAW	1	μg/l	N	<1		
2,2-Dichloropropane	VOCHSAW	1	µg/l	N	<1		
2-Chlorotoluene	VOCHSAW	1	μg/l	N	<1		
4-Chlorotoluene	VOCHSAW	1	μg/l	N	<1		
Benzene	VOCHSAW	1	μg/l	N	<1		
Bromobenzene	VOCHSAW	1	μg/l	N	<1		
Bromochloromethane	VOCHSAW	1	μg/l	N	<1		
Bromodichloromethane	VOCHSAW	1	μg/l	N	<1		
Bromoform	VOCHSAW	1	μg/l	N	<1		
Bromomethane	VOCHSAW	5	μg/l	N	<5		
Carbon Tetrachloride	VOCHSAW	1	μg/l	N	<1		
Chlorobenzene	VOCHSAW	1	μg/l	N	<1		
Chloroethane	VOCHSAW	5	μg/l	N	<5		
Chloroform	VOCHSAW	5	μg/l	N	<5		
Chloromethane	VOCHSAW	1	μg/l	N	<1		

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Analysis Results											
			Sa	mple ID	O	001	002	003	0	04	005
			Cust	omer ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4	at 1.8	TP1 at 0.2
			Samp	ole Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Sampli	ng Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
cis 1,2-Dichloroethene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
cis 1,3-Dichloropropene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
Dibromochloromethane	VOCHSAW	1	μg/l	N	<1				<1		<5 D
Dibromomethane	VOCHSAW	1	μg/l	N	<1				<1		<5 D
Dichlorodifluoromethane	VOCHSAW	1	μg/l	N	<1				<1		<5 D
Ethylbenzene	VOCHSAW	0.5	μg/l	N	<0.5				<0.5		<2.5 D
Hexachlorobutadiene	VOCHSAW	5	μg/l	N	<5				<5		<25 D
iso-Propylbenzene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
m and p-Xylene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
MTBE	VOCHSAW	1	μg/l	N	<1				<1		<5 D
Naphthalene	VOCHSAW	5	μg/l	N	<5				<5		<25 D
n-Butylbenzene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
o-Xylene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
p-isopropyltoluene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
Propylbenzene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
sec-Butylbenzene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
Styrene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
tert-Butylbenzene	VOCHSAW	1	µg/l	N	<1				<1		<5 D
Tetrachloroethene	VOCHSAW	5	μg/l	N	<5				<5		<25 D

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sample ID	005	006	0	07	008	0	09
			Customer ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2 a	at 0.25
			Sample Type	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Accred.							
cis 1,2-Dichloroethene	VOCHSAW	1	μg/l N			<1			<5 D	
cis 1,3-Dichloropropene	VOCHSAW	1	μg/l N			<1			<5 D	
Dibromochloromethane	VOCHSAW	1	μg/l N			<1			<5 D	
Dibromomethane	VOCHSAW	1	μg/l N			<1			<5 D	
Dichlorodifluoromethane	VOCHSAW	1	μg/l N			<1			<5 D	
Ethylbenzene	VOCHSAW	0.5	μg/l N			<0.5			<2.5 D	
Hexachlorobutadiene	VOCHSAW	5	μg/l N			<5			<25 D	
iso-Propylbenzene	VOCHSAW	1	μg/l N			<1			<5 D	
m and p-Xylene	VOCHSAW	1	μg/l N			<1			<5 D	
МТВЕ	VOCHSAW	1	μg/l N			<1			<5 D	
Naphthalene	VOCHSAW	5	μg/l N			<5			<25 D	
n-Butylbenzene	VOCHSAW	1	μg/l N			<1			<5 D	
o-Xylene	VOCHSAW	1	μg/l N			<1			<5 D	
o-Isopropyltoluene	VOCHSAW	1	μg/l N			<1			<5 D	
Propylbenzene	VOCHSAW	1	μg/l N			<1			<5 D	
sec-Butylbenzene	VOCHSAW	1	μg/l N			<1			<5 p	
Styrene	VOCHSAW	1	μg/l N			<1			<5 D	
ert-Butylbenzene	VOCHSAW	1	μg/l N			<1			<5 D	
Tetrachloroethene	VOCHSAW	5	μg/l N			<5			<25 D	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sai	nple ID	010	011	0	12	013		14
			Custo	omer ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3 a	at 0.75
			Samp	le Type	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samplin	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
cis 1,2-Dichloroethene	VOCHSAW	1	μg/l	N			<1			<1	
cis 1,3-Dichloropropene	VOCHSAW	1	μg/l	N			<1			<1	
Dibromochloromethane	VOCHSAW	1	μg/l	N			<1			<1	
Dibromomethane	VOCHSAW	1	μg/l	N			<1			<1	
Dichlorodifluoromethane	VOCHSAW	1	μg/l	N			<1			<1	
Ethylbenzene	VOCHSAW	0.5	μg/l	N			<0.5			<0.5	
Hexachlorobutadiene	VOCHSAW	5	μg/l	N			<5			<5	
so-Propylbenzene	VOCHSAW	1	μg/l	N			<1			<1	
m and p-Xylene	VOCHSAW	1	μg/l	N			<1			<1	
МТВЕ	VOCHSAW	1	μg/l	N			<1			<1	
Naphthalene	VOCHSAW	5	μg/l	N			<5			<5	
n-Butylbenzene	VOCHSAW	1	μg/l	N			<1			<1	
o-Xylene	VOCHSAW	1	μg/l	N			<1			<1	
p-Isopropyltoluene	VOCHSAW	1	μg/l	N			<1			<1	
Propylbenzene	VOCHSAW	1	μg/l	N			<1			<1	
ec-Butylbenzene	VOCHSAW	1	μg/l	N			<1			<1	
Styrene	VOCHSAW	1	μg/l	N			<1			<1	
ert-Butylbenzene	VOCHSAW	1	μg/l	N			<1			<1	
	VOCHSAW	5	μg/l	N			<5			<5	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sample ID	015	0	16	0	17	0	18
			Customer ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
			Sample Type	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Sampling Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Accred.							
cis 1,2-Dichloroethene	VOCHSAW	1	μg/l N		<5 D		<1		<1	
cis 1,3-Dichloropropene	VOCHSAW	1	μg/l N		<5 D		<1		<1	
Dibromochloromethane	VOCHSAW	1	μg/l N		<5 D		<1		<1	
Dibromomethane	VOCHSAW	1	μg/l N		<5 D		<1		<1	
Dichlorodifluoromethane	VOCHSAW	1	μg/l N		<5 D		<1		<1	
Ethylbenzene	VOCHSAW	0.5	μg/l N		<2.5 p		<0.5		<0.5	
Hexachlorobutadiene	VOCHSAW	5	μg/l N		<25 D		<5		<5	
iso-Propylbenzene	VOCHSAW	1	μg/l N		<5 D		<1		<1	
m and p-Xylene	VOCHSAW	1	μg/l N		<5 D		<1		<1	
МТВЕ	VOCHSAW	1	μg/l N		<5 D		<1		<1	
Naphthalene	VOCHSAW	5	μg/l N		<25 D		<5		<5	
n-Butylbenzene	VOCHSAW	1	μg/l N		<5 D		<1		<1	
o-Xylene	VOCHSAW	1	μg/l N		<5 D		<1		<1	
o-Isopropyltoluene	VOCHSAW	1	μg/l N		<5 D		<1		<1	
Propylbenzene	VOCHSAW	1	μg/l N		<5 D		<1		<1	
sec-Butylbenzene	VOCHSAW	1	μg/l N		<5 D		<1		<1	
Styrene	VOCHSAW	1	μg/l N		<5 D		<1		<1	
ert-Butylbenzene	VOCHSAW	1	μg/l N		<5 D		<1		<1	
Tetrachloroethene	VOCHSAW	5	μg/l N		<25 D		<5		<5	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			S	Sample ID	0	19	020
			Cus	stomer ID	TP7	at 2.2	TP7 at 3.0
			San	nple Type	LPL	SOLID	SOLID
			Samp	ling Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
cis 1,2-Dichloroethene	VOCHSAW	1	μg/l	N	<1		
cis 1,3-Dichloropropene	VOCHSAW	1	μg/l	N	<1		
Dibromochloromethane	VOCHSAW	1	μg/l	N	<1		
Dibromomethane	VOCHSAW	1	μg/l	N	<1		
Dichlorodifluoromethane	VOCHSAW	1	μg/l	N	<1		
Ethylbenzene	VOCHSAW	0.5	μg/l	N	<0.5		
Hexachlorobutadiene	VOCHSAW	5	μg/l	N	<5		
iso-Propylbenzene	VOCHSAW	1	μg/l	N	<1		
m and p-Xylene	VOCHSAW	1	μg/l	N	<1		
MTBE	VOCHSAW	1	μg/l	N	<1		
Naphthalene	VOCHSAW	5	μg/l	N	<5		
n-Butylbenzene	VOCHSAW	1	μg/l	N	<1		
o-Xylene	VOCHSAW	1	μg/l	N	<1		
p-Isopropyltoluene	VOCHSAW	1	μg/l	N	<1		
Propylbenzene	VOCHSAW	1	μg/l	N	<1		
sec-Butylbenzene	VOCHSAW	1	μg/l	N	<1		
Styrene	VOCHSAW	1	μg/l	N	<1		
tert-Butylbenzene	VOCHSAW	1	μg/l	N	<1		
Tetrachloroethene	VOCHSAW	5	μg/l	N	<5		

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			S	ample ID	C	001	002	003	0	04	005
			Cus	tomer ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4	at 1.8	TP1 at 0.2
			Sam	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
				ling Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/202
Analysis	Method Code	MDL	Units	Accred.							
oluene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
rans 1,2-Dichloroethene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
rans 1,3-Dichloropropene	VOCHSAW	1	μg/l	N	<1				<1		<5 D
richloroethene	VOCHSAW	5	μg/l	N	<5				<5		<25 D
richlorofluoromethane	VOCHSAW	1	μg/l	N	<1				<1		<5 D
/inyl Chloride	VOCHSAW	1	μg/l	N	<1				<1		<5 D
,1,1,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
,1,1-Trichloroethane	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
,1,2,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	N		<6 D				<6 D	
,1,2-Trichloroethane	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
,1-Dichloroethane	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
1-Dichloroethene	VOCHSAS	1	μg/kg^	U		<6 D				<6 D	
,1-Dichloropropene	VOCHSAS	1	μg/kg^	UM		<6 D				<6 p	
2,3-Trichlorobenzene	VOCHSAS	3	μg/kg^	UM		<17 D				<18 D	
2,3-Trichloropropane	VOCHSAS	1	μg/kg^	UM		<6 D				<6 p	
2,4-Trichlorobenzene	VOCHSAS	3	μg/kg^	N		<17 D				<18 D	
2,4-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM		<6 D				<6 p	
2-Dibromo-3-chloropropane	VOCHSAS	1	μg/kg^	U		<6 D				<6 D	
,2-Dibromoethane	VOCHSAS	1	μg/kg^	UM		<6 D				<6 p	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	005	006	00	07	008	0	09
			Custo	mer ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2 a	at 0.25
			Sample	е Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samplin	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	Accred.							
oluene	VOCHSAW	1	μg/l	N			<1			<5 D	
rans 1,2-Dichloroethene	VOCHSAW	1	μg/l	N			<1			<5 D	
rans 1,3-Dichloropropene	VOCHSAW	1	μg/l	N			<1			<5 D	
richloroethene	VOCHSAW	5	μg/l	N			<5			<25 D	
richlorofluoromethane	VOCHSAW	1	μg/l	N			<1			<5 D	
/inyl Chloride	VOCHSAW	1	μg/l	N			<1			<5 D	
,1,1,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
,1,1-Trichloroethane	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
,1,2,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	N	<6 D			<1			<6 D
,1,2-Trichloroethane	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
,1-Dichloroethane	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
,1-Dichloroethene	VOCHSAS	1	μg/kg^	U	<6* D			<1			<6* D
,1-Dichloropropene	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
,2,3-Trichlorobenzene	VOCHSAS	3	μg/kg^	UM	<18* D			<4			<17* D
,2,3-Trichloropropane	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
,2,4-Trichlorobenzene	VOCHSAS	3	μg/kg^	N	<18 D			<4			<17 D
,2,4-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
,2-Dibromo-3-chloropropane	VOCHSAS	1	μg/kg^	U	<6* D			<1			<6* D
,2-Dibromoethane	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	010	011	0	12	013	0	14
			Custo	mer ID	TP2 at 0.8	TP2 at 1.2		at 3.0	TP3 at 0.35		at 0.75
			Sample	е Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samplin	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	Accred.							
Toluene	VOCHSAW	1	μg/l	N			<1			<1	
trans 1,2-Dichloroethene	VOCHSAW	1	μg/l	N			<1			<1	
rrans 1,3-Dichloropropene	VOCHSAW	1	μg/l	N			<1			<1	
Frichloroethene	VOCHSAW	5	μg/l	N			<5			<5	
Trichlorofluoromethane	VOCHSAW	1	μg/l	N			<1			<1	
Vinyl Chloride	VOCHSAW	1	μg/l	N			<1			<1	
1,1,1,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	UM				<1			<6 D
1,1,1-Trichloroethane	VOCHSAS	1	μg/kg^	UM				<1			<6 D
1,1,2,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	N				<1			<6 D
1,1,2-Trichloroethane	VOCHSAS	1	μg/kg^	UM				<1			<6 D
1,1-Dichloroethane	VOCHSAS	1	μg/kg^	UM				<1			<6 D
1,1-Dichloroethene	VOCHSAS	1	μg/kg^	U				<1			<6 p
1,1-Dichloropropene	VOCHSAS	1	μg/kg^	UM				<1			<6 p
,2,3-Trichlorobenzene	VOCHSAS	3	μg/kg^	UM				<4			<18 D
1,2,3-Trichloropropane	VOCHSAS	1	μg/kg^	UM				<1			<6 D
,2,4-Trichlorobenzene	VOCHSAS	3	μg/kg^	N				<4			<18 D
,2,4-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
,2-Dibromo-3-chloropropane	VOCHSAS	1	μg/kg^	U				<1			<6 D
1,2-Dibromoethane	VOCHSAS	1	μg/kg^	UM				<1			<6 p

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sample ID	015	0	16	0	17	0	18
			Customer ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
			Sample Type	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Sampling Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Accred.							
Toluene	VOCHSAW	1	μg/l N		<5 D		<1		<1	
rrans 1,2-Dichloroethene	VOCHSAW	1	μg/l N		<5 D		<1		<1	
rans 1,3-Dichloropropene	VOCHSAW	1	μg/l N		<5 D		<1		<1	
Trichloroethene	VOCHSAW	5	μg/l N		<25 D		<5		<5	
Frichlorofluoromethane	VOCHSAW	1	μg/l N		<5 D		<1		<1	
Vinyl Chloride	VOCHSAW	1	μg/l N		<5 D		<1		<1	
,1,1,2-Tetrachloroethane	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 D
1,1,1-Trichloroethane	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 D
1,1,2,2-Tetrachloroethane	VOCHSAS	1	μg/kg^ N			<1		<6 D		<6 D
,1,2-Trichloroethane	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 p
,1-Dichloroethane	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 p
,1-Dichloroethene	VOCHSAS	1	μg/kg^ U			<1		<6* D		<6 p
,1-Dichloropropene	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 p
,2,3-Trichlorobenzene	VOCHSAS	3	μg/kg^ UM			<4		<17* D		<19 D
,2,3-Trichloropropane	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 p
,2,4-Trichlorobenzene	VOCHSAS	3	μg/kg^ N			<4		<17 D		<19 D
,2,4-Trimethylbenzene	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 p
,2-Dibromo-3-chloropropane	VOCHSAS	1	μg/kg^ U			<1		<6* D		<6 D
1,2-Dibromoethane	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 D

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sa	mple ID	0	19	020
			Cust	omer ID	TP7	at 2.2	TP7 at 3.0
			Samr	ole Type	LPL	SOLID	SOLID
				ng Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
Toluene	VOCHSAW	1	μg/l	N	<1		
trans 1,2-Dichloroethene	VOCHSAW	1	μg/l	N	<1		
trans 1,3-Dichloropropene	VOCHSAW	1	μg/l	N	<1		
Trichloroethene	VOCHSAW	5	μg/l	N	<5		
Trichlorofluoromethane	VOCHSAW	1	μg/l	N	<1		
Vinyl Chloride	VOCHSAW	1	μg/l	N	<1		
1,1,1,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	UM		<1	
1,1,1-Trichloroethane	VOCHSAS	1	μg/kg^	UM		<1	
1,1,2,2-Tetrachloroethane	VOCHSAS	1	μg/kg^	N		<1	
1,1,2-Trichloroethane	VOCHSAS	1	μg/kg^	UM		<1	
1,1-Dichloroethane	VOCHSAS	1	μg/kg^	UM		<1	
1,1-Dichloroethene	VOCHSAS	1	μg/kg^	U		<1	
1,1-Dichloropropene	VOCHSAS	1	μg/kg^	UM		<1	
1,2,3-Trichlorobenzene	VOCHSAS	3	μg/kg^	UM		<4	
1,2,3-Trichloropropane	VOCHSAS	1	μg/kg^	UM		<1	
1,2,4-Trichlorobenzene	VOCHSAS	3	μg/kg^	N		<4	
1,2,4-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM		<1	
1,2-Dibromo-3-chloropropane	VOCHSAS	1	μg/kg^	U		4	
1,2-Dibromoethane	VOCHSAS	1	μg/kg^	UM		<1	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

Allarysis Results				_							
			Sa	mple ID		001	002	003		04	005
			Custo	omer ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4	at 1.8	TP1 at 0.2
			Samp	ole Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Sampli	ng Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
1,2-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
1,2-Dichloroethane	VOCHSAS	1	μg/kg^	UM		<6 D				<6 p	
1,2-Dichloropropane	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
1,3,5-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
1,3-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM		<6 D				<6 p	
1,3-Dichloropropane	VOCHSAS	1	μg/kg^	UM		<6 D				<6 p	
1,4-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
2,2-Dichloropropane	VOCHSAS	2	μg/kg^	UM		<11 D				<12 D	
2-Chlorotoluene	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
4-Chlorotoluene	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
Benzene	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
Bromobenzene	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
Bromochloromethane	VOCHSAS	1	μg/kg^	UM		<6* B,D				<6* B,D	
Bromodichloromethane	VOCHSAS	1	μg/kg^	UM		<6 D				<6 p	
Bromoform	VOCHSAS	1	μg/kg^	UM		<6 D				<6 p	
Bromomethane	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
Carbon Tetrachloride	VOCHSAS	1	μg/kg^	UM		<6 D				<6 p	
Chlorobenzene	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
Chloroethane	VOCHSAS	2	μg/kg^	UM		<11 D				<12 D	
Onlorocalano	V 0 0 1 10 / 10		pg/kg			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				\12 D	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

		Sam	ple ID	005	006	0	07	008	0	09
		Custor	mer ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2 a	at 0.25
		Sample	е Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
		Sampling	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Method Code	MDL	Units A	Accred.							
VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
VOCHSAS	2	μg/kg^	UM	<12* D			<3			<11* D
VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* p
VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
VOCHSAS	1	μg/kg^	UM	<6* B,D			<1			<6* B,D
VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
VOCHSAS	1	μg/kg^	UM	<6* D			<1* _B			<6* D
VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
VOCHSAS	2	μg/kg^	UM	<12* D			<3			<11* D
	VOCHSAS VOCHSAS	VOCHSAS 1 VOCHSAS 1	Custor Sampling Sampling Method Code MDL Units A VOCHSAS 1 μg/kg^ VOCHSAS 1 μg/kg^	VOCHSAS 1 μg/kg^ UM VOCHSAS 1 μg/kg^ UM	Customer ID TP1 at 0.2	Customer ID TP1 at 0.2 TP1 at 0.6	Customer ID Sample Type Sampling Date Sampling Date	Nethod Code	Method Code	Print 1 1 1 1 1 1 1 1 1

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	010	011	0	12	013	0	14
			Custon	ner ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3 a	at 0.75
			Sample	Туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	ccred.							
1,2-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
,2-Dichloroethane	VOCHSAS	1	μg/kg^	UM				<1			<6 D
,2-Dichloropropane	VOCHSAS	1	μg/kg^	UM				<1			<6 D
,3,5-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
1,3-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
1,3-Dichloropropane	VOCHSAS	1	μg/kg^	UM				<1			<6 D
1,4-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
2,2-Dichloropropane	VOCHSAS	2	μg/kg^	UM				<3			<12 D
2-Chlorotoluene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
1-Chlorotoluene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
Benzene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
Bromobenzene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
Bromochloromethane	VOCHSAS	1	μg/kg^	UM				<1			<6* B,D
Bromodichloromethane	VOCHSAS	1	μg/kg^	UM				<1			<6 D
Bromoform	VOCHSAS	1	μg/kg^	UM				<1			<6 D
romomethane	VOCHSAS	1	μg/kg^	UM				<1* B			<6 p
Carbon Tetrachloride	VOCHSAS	1	μg/kg^	UM				<1			<6 p
Chlorobenzene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
Chloroethane	VOCHSAS	2	μg/kg^	UM				<3			<12 D

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sample ID	015	0	16	0.	17	0	18
			Customer ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
			Sample Type	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Sampling Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units Accred.							
1,2-Dichlorobenzene	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 D
1,2-Dichloroethane	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 p
,2-Dichloropropane	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 D
1,3,5-Trimethylbenzene	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 D
1,3-Dichlorobenzene	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 p
1,3-Dichloropropane	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 D
1,4-Dichlorobenzene	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 p
2,2-Dichloropropane	VOCHSAS	2	μg/kg^ UM			<3		<11* D		<13 D
2-Chlorotoluene	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 D
4-Chlorotoluene	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 D
Benzene	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 D
Bromobenzene	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 D
Bromochloromethane	VOCHSAS	1	μg/kg^ UM			<1		<6* B,D		<6* B,D
Bromodichloromethane	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 D
romoform	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 p
romomethane	VOCHSAS	1	μg/kg^ UM			<1* B		<6* D		<6 D
Carbon Tetrachloride	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 D
Chlorobenzene	VOCHSAS	1	μg/kg^ UM			<1		<6* D		<6 D
Chloroethane	VOCHSAS	2	μg/kg^ UM			<3		<11* D		<13 D

Project Name: Imingham Dock

Project No: 22052067

Date Issued: 22/06/2022

			Sa	mple ID	0	119	020
			Custo	omer ID	TP7	at 2.2	TP7 at 3.0
			Samp	le Type	LPL	SOLID	SOLID
			Sampli	ng Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
1,2-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM		<1	
1,2-Dichloroethane	VOCHSAS	1	μg/kg^	UM		<1	
1,2-Dichloropropane	VOCHSAS	1	μg/kg^	UM		<1	
1,3,5-Trimethylbenzene	VOCHSAS	1	μg/kg^	UM		<1	
1,3-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM		<1	
1,3-Dichloropropane	VOCHSAS	1	μg/kg^	UM		<1	
1,4-Dichlorobenzene	VOCHSAS	1	μg/kg^	UM		<1	
2,2-Dichloropropane	VOCHSAS	2	μg/kg^	UM		<3	
2-Chlorotoluene	VOCHSAS	1	μg/kg^	UM		<1	
4-Chlorotoluene	VOCHSAS	1	μg/kg^	ИМ		<1	
Benzene	VOCHSAS	1	μg/kg^	UM		<1	
Bromobenzene	VOCHSAS	1	μg/kg^	ИМ		<1	
Bromochloromethane	VOCHSAS	1	μg/kg^	UM		<1	
Bromodichloromethane	VOCHSAS	1	μg/kg^	UM		<1	
Bromoform	VOCHSAS	1	μg/kg^	UM		<1	
Bromomethane	VOCHSAS	1	μg/kg^	UM		<1* _B	
Carbon Tetrachloride	VOCHSAS	1	μg/kg^	UM		<1	
Chlorobenzene	VOCHSAS	1	μg/kg^	UM		<1	
Chloroethane	VOCHSAS	2	μg/kg^	UM		<3	
1							

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			S	ample ID	0	001	002	003	0	04	005
			Cus	tomer ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4	at 1.8	TP1 at 0.2
			Sam	ple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Sampl	ing Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Chloroform	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
Chloromethane	VOCHSAS	3	μg/kg^	U		<17 D				<18 D	
cis 1,2-Dichloroethene	VOCHSAS	5	μg/kg^	UM		<29 D				<30 D	
cis 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
Dibromochloromethane	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
Dibromomethane	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
Dichlorodifluoromethane	VOCHSAS	1	μg/kg^	N		<6 D				<6 D	
Ethylbenzene	VOCHSAS	2	μg/kg^	UM		<11 D				<12 D	
Hexachlorobutadiene	VOCHSAS	2	μg/kg^	N		<11 D				<12 D	
iso-Propylbenzene	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
m and p-Xylene	VOCHSAS	4	μg/kg^	UM		<23 D				<24 D	
МТВЕ	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
Naphthalene	VOCHSAS	5	μg/kg^	UM		<29 D				<30 D	
n-Butylbenzene	VOCHSAS	1	μg/kg^	U		<6 D				<6 D	
o-Xylene	VOCHSAS	2	μg/kg^	UM		<11 p				<12 p	
p-Isopropyltoluene	VOCHSAS	1	μg/kg^	UM		<6 p				<6 D	
Propylbenzene	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
sec-Butylbenzene	VOCHSAS	1	µg/kg^	UM		<6 p				<6 D	
Styrene	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	ple ID	005	006	0	07	008	0	09
			Custor	mer ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2 a	at 0.25
			Sample	туре	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Sampling	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	ccred.							
Chloroform	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
Chloromethane	VOCHSAS	3	μg/kg^	U	<18* D			<4			<17* D
cis 1,2-Dichloroethene	VOCHSAS	5	μg/kg^	UM	<30* D			<7			<28* D
cis 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
Dibromochloromethane	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
Dibromomethane	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
Dichlorodifluoromethane	VOCHSAS	1	μg/kg^	N	<6 D			<1			<6 D
Ethylbenzene	VOCHSAS	2	μg/kg^	UM	<12* D			<3			<11* D
Hexachlorobutadiene	VOCHSAS	2	μg/kg^	N	<12 D			<3			<11 D
iso-Propylbenzene	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
m and p-Xylene	VOCHSAS	4	μg/kg^	UM	<24* D			<6			<23* D
МТВЕ	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
Naphthalene	VOCHSAS	5	μg/kg^	UM	<30* D			<7			<28* D
n-Butylbenzene	VOCHSAS	1	μg/kg^	U	<6* D			<1			<6* D
o-Xylene	VOCHSAS	2	μg/kg^	UM	<12* D			<3			<11* D
o-Isopropyltoluene	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
Propylbenzene	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
ec-Butylbenzene	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
Styrene	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sar	nple ID	010	011		12	013		14
			Custo	mer ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3	at 0.75
			Samp	le Type	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samplir	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
Chloroform	VOCHSAS	1	μg/kg^	UM				<1			<6 D
Chloromethane	VOCHSAS	3	μg/kg^	U				<4			<18 D
cis 1,2-Dichloroethene	VOCHSAS	5	μg/kg^	UM				<6			<30 D
cis 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
Dibromochloromethane	VOCHSAS	1	μg/kg^	UM				<1			<6 p
Dibromomethane	VOCHSAS	1	μg/kg^	UM				<1			<6 p
Dichlorodifluoromethane	VOCHSAS	1	μg/kg^	N				<1			<6 D
Ethylbenzene	VOCHSAS	2	μg/kg^	UM				<3			<12 D
Hexachlorobutadiene	VOCHSAS	2	μg/kg^	N				<3			<12 D
iso-Propylbenzene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
m and p-Xylene	VOCHSAS	4	μg/kg^	UM				<5			<24 D
МТВЕ	VOCHSAS	1	μg/kg^	UM				<1			<6 D
Naphthalene	VOCHSAS	5	μg/kg^	UM				<6			<30 D
n-Butylbenzene	VOCHSAS	1	μg/kg^	U				<1			<6 D
o-Xylene	VOCHSAS	2	μg/kg^	UM				<3			<12 D
p-Isopropyltoluene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
Propylbenzene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
sec-Butylbenzene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
Styrene	VOCHSAS	1	μg/kg^	UM				<1			<6 p

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

	Sample ID			ple ID	0.0			0	17	018	
			Custor	mer ID	TP3 at 1.8	TP3	at 2.9	TP7	at 0.2	TP7	at 0.9
			Sample	туре -	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Sampling	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	ccred.							
Chloroform	VOCHSAS	1	μg/kg^	UM			<1		<6* D		<6 D
Chloromethane	VOCHSAS	3	μg/kg^	U			<4		<17* D		<19 D
sis 1,2-Dichloroethene	VOCHSAS	5	μg/kg^	UM			<7		<28* D		<32 D
cis 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM			<1		<6* D		<6 p
Dibromochloromethane	VOCHSAS	1	μg/kg^	UM			<1		<6* D		<6 D
Dibromomethane	VOCHSAS	1	μg/kg^	UM			<1		<6* D		<6 D
Dichlorodifluoromethane	VOCHSAS	1	μg/kg^	N			<1		<6 p		<6 p
Ethylbenzene	VOCHSAS	2	μg/kg^	UM			<3		<11* D		<13 D
Hexachlorobutadiene	VOCHSAS	2	μg/kg^	N			<3		<11 D		<13 D
iso-Propylbenzene	VOCHSAS	1	μg/kg^	UM			<1		<6* D		<6 p
m and p-Xylene	VOCHSAS	4	μg/kg^	UM			<5		<22* D		<25 D
МТВЕ	VOCHSAS	1	μg/kg^	UM			<1		<6* D		<6 p
Naphthalene	VOCHSAS	5	μg/kg^	UM			<7		<28* D		<32 D
n-Butylbenzene	VOCHSAS	1	μg/kg^	U			<1		<6* D		<6 p
o-Xylene	VOCHSAS	2	μg/kg^	UM			<3		<11* D		<13 D
o-Isopropyltoluene	VOCHSAS	1	μg/kg^	UM			<1		<6* D		<6 p
Propylbenzene	VOCHSAS	1	μg/kg^	UM			<1		<6* D		<6 p
sec-Butylbenzene	VOCHSAS	1	μg/kg^	UM			<1		<6* D		<6 D
Styrene	VOCHSAS	1	μg/kg^	UM			<1		<6* D		<6 p

Project Name: Imingham Dock

Project No: 22052067

Date Issued: 22/06/2022

			Sa	ample ID	0	19	020
			Cust	omer ID	TP7	at 2.2	TP7 at 3.0
			Sam	ple Type	LPL	SOLID	SOLID
			Sampl	ing Date	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.			
Chloroform	VOCHSAS	1	μg/kg^	UM		<1	
Chloromethane	VOCHSAS	3	μg/kg^	U		<4	
cis 1,2-Dichloroethene	VOCHSAS	5	μg/kg^	UM		<7	
cis 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM		<1	
Dibromochloromethane	VOCHSAS	1	μg/kg^	UM		<1	
Dibromomethane	VOCHSAS	1	μg/kg^	UM		<1	
Dichlorodifluoromethane	VOCHSAS	1	μg/kg^	N		<1	
Ethylbenzene	VOCHSAS	2	μg/kg^	UM		<3	
Hexachlorobutadiene	VOCHSAS	2	μg/kg^	N		<3	
iso-Propylbenzene	VOCHSAS	1	μg/kg^	UM		<1	
m and p-Xylene	VOCHSAS	4	μg/kg^	UM		<6	
MTBE	VOCHSAS	1	μg/kg^	UM		<1	
Naphthalene	VOCHSAS	5	μg/kg^	UM		<7	
n-Butylbenzene	VOCHSAS	1	μg/kg^	U		<1	
o-Xylene	VOCHSAS	2	μg/kg^	UM		<3	
p-Isopropyltoluene	VOCHSAS	1	μg/kg^	UM		<1	
Propylbenzene	VOCHSAS	1	μg/kg^	UM		<1	
sec-Butylbenzene	VOCHSAS	1	μg/kg^	ИМ		<1	
Styrene	VOCHSAS	1	μg/kg^	UM		<1	

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			S	Sample ID		01	002	003	0	04	005
			Cus	stomer ID	TP4	at 0.2	TP4 at 0.6	TP4 at 1.2	TP4	at 1.8	TP1 at 0.2
			San	nple Type	LPL	SOLID	SOLID	SOLID	LPL	SOLID	LPL
			Samp	ling Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
ert-Butylbenzene	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
Tetrachloroethene	VOCHSAS	3	μg/kg^	UM		22				19	
oluene	VOCHSAS	5	μg/kg^	UM		<29 D				<30 D	
rans 1,2-Dichloroethene	VOCHSAS	1	μg/kg^	UM		<6 p				<6 D	
rans 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM		<6 p				<6 D	
richloroethene	VOCHSAS	1	μg/kg^	U		<6 p				<6 D	
richlorofluoromethane	VOCHSAS	1	μg/kg^	UM		<6 D				<6 D	
/inyl Chloride	VOCHSAS	1	μg/kg^	UM		<6* B,D				<6* B,D	
otal Moisture at 35 C	CLANDPREP	0.1	%	N		12.5	14.7	18.4		17.6	
Description of Solid Material	CLANDPREP		-	N		CLAY	CLAY	CLAY		CLAY	
equivalent Weight of Dry Material (kg)	Leachate Prep CEN 2:1		kg	N		0.400				0.400	
raction above 4 mm (%)	Leachate Prep CEN 2:1		%	N		0				100	
raction of non-crushable material (%)	Leachate Prep CEN 2:1		%	N		0				0	
olume of Water for 2:1 Leach (ltr)	Leachate Prep CEN 2:1		I	N		0.742				0.614	
Veight of Sample Leached (kg)	Leachate Prep CEN 2:1		kg	N		0.458				0.586	
sbestos Identification	SUB020		-	N		NAIIS	NAIIS	СН		NAIIS	
Asbestos Stage 2	SUB020	0.001	%	N				0.002			

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			s	ample ID	005	006	0	07	008	0	09
			Cus	stomer ID	TP1 at 0.2	TP1 at 0.6	TP1	at 2.0	TP1 at 3.0	TP2	at 0.25
			Sam	ple Type	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samp	ling Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units	Accred.							
ert-Butylbenzene	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
Tetrachloroethene	VOCHSAS	3	μg/kg^	UM	21*			<4			24*
Toluene	VOCHSAS	5	μg/kg^	UM	<30* D			<7			<28* D
rans 1,2-Dichloroethene	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
rrans 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
Trichloroethene	VOCHSAS	1	μg/kg^	U	<6* D			<1			<6* D
Trichlorofluoromethane	VOCHSAS	1	μg/kg^	UM	<6* D			<1			<6* D
Vinyl Chloride	VOCHSAS	1	μg/kg^	UM	<6* _{B,D}			<1			<6* B,D
Total Moisture at 35 C	CLANDPREP	0.1	%	N	17.4	16.4		34.5	24.9		11.9
Description of Solid Material	CLANDPREP		-	N	GRAVEL	GRAVEL		CLAY	CLAY		GRAVEL
Equivalent Weight of Dry Material (kg)	Leachate Prep CEN 2:1		kg	N	0.400			0.400			0.400
Fraction above 4 mm (%)	Leachate Prep CEN 2:1		%	N	100			100			53.9
raction of non-crushable material (%)	Leachate Prep CEN 2:1		%	N	0			0			0
/olume of Water for 2:1 Leach (ltr)	Leachate Prep CEN 2:1		I	N	0.706			0.589			0.734
Neight of Sample Leached (kg)	Leachate Prep CEN 2:1		kg	N	0.494			0.611			0.466
Asbestos Identification	SUB020		-	N	NAIIS	NAIIS		NAIIS	NAIIS		NAIIS
Asbestos Stage 2	SUB020	0.001	%	N							

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sam	nple ID	010	011	0	12	013	0	14
			Custo	mer ID	TP2 at 0.8	TP2 at 1.2	TP2	at 3.0	TP3 at 0.35	TP3 a	at 0.75
			Sample	e Type	SOLID	SOLID	LPL	SOLID	SOLID	LPL	SOLID
			Samplin	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	Accred.							
ert-Butylbenzene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
Tetrachloroethene	VOCHSAS	3	μg/kg^	UM				<4			<18 p
Toluene	VOCHSAS	5	μg/kg^	UM				<6			<30 D
rrans 1,2-Dichloroethene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
trans 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM				<1			<6 D
Trichloroethene	VOCHSAS	1	μg/kg^	U				<1			<6 D
Trichlorofluoromethane	VOCHSAS	1	μg/kg^	UM				<1			<6 D
Vinyl Chloride	VOCHSAS	1	μg/kg^	UM				<1			<6* B,D
Total Moisture at 35 C	CLANDPREP	0.1	%	N	17.9	29.5		20.4	14.1		15.3
Description of Solid Material	CLANDPREP		-	N	CLAY	CLAY		CLAY	CLAY		CLAY
Equivalent Weight of Dry Material (kg)	Leachate Prep CEN 2:1		kg	N				0.400			0.400
Fraction above 4 mm (%)	Leachate Prep CEN 2:1		%	N				0			100
Fraction of non-crushable material (%)	Leachate Prep CEN 2:1		%	N				0			0
/olume of Water for 2:1 Leach (ltr)	Leachate Prep CEN 2:1		I	N				0.691			0.721
Neight of Sample Leached (kg)	Leachate Prep CEN 2:1		kg	N				0.509			0.479
Asbestos Identification	SUB020		-	N	NAIIS	NAIIS		NAIIS	NAIIS		NAIIS
Asbestos Stage 2	SUB020	0.001	%	N							

Project Name: Imingham Dock

Project No: 22052067

Date Issued: 22/06/2022

Analysis Results				_				ı			
			Sam	ple ID	015	_	16	-	17	-	18
			Custor	mer ID	TP3 at 1.8	TP3	at 2.9	TP7 at 0.2		TP7	at 0.9
			Sample	е Туре	SOLID	LPL	SOLID	LPL	SOLID	LPL	SOLID
			Sampling	g Date	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL	Units A	Accred.							
tert-Butylbenzene	VOCHSAS	1	μg/kg^	UM			<1		<6* D		<6 D
Tetrachloroethene	VOCHSAS	3	μg/kg^	UM			<4		23*		23
Toluene	VOCHSAS	5	μg/kg^	UM			<7		<28* D		<32 D
trans 1,2-Dichloroethene	VOCHSAS	1	μg/kg^	UM			<1		<6* D		<6 D
trans 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM			<1		<6* D		<6 D
Trichloroethene	VOCHSAS	1	μg/kg^	U			<1		<6* D		<6 D
Trichlorofluoromethane	VOCHSAS	1	μg/kg^	UM			<1		<6* D		<6 D
Vinyl Chloride	VOCHSAS	1	μg/kg^	UM			<1		<6* B,D		<6* _{B,D}
Total Moisture at 35 C	CLANDPREP	0.1	%	N	14.4		27.4		9.1		21.0
Description of Solid Material	CLANDPREP		-	N	CLAY		CLAY		GRAVEL		CLAY
Equivalent Weight of Dry Material (kg)	Leachate Prep CEN 2:1		kg	N			0.400		0.400		0.400
Fraction above 4 mm (%)	Leachate Prep CEN 2:1		%	N			100		0		0
Fraction of non-crushable material (%)	Leachate Prep CEN 2:1		%	N			0		0		0
Volume of Water for 2:1 Leach (ltr)	Leachate Prep CEN 2:1		I	N			0.636		0.753		0.685
Weight of Sample Leached (kg)	Leachate Prep CEN 2:1		kg	N			0.564		0.447		0.515
Asbestos Identification	SUB020		-	N	NAIIS		NAIIS		NAIIS		NAIIS
Asbestos Stage 2	SUB020	0.001	%	N							

Project Name: Imingham Dock

Project No: 22052067 Date Issued: 22/06/2022

			Sar	nple ID	0	19	020
			Custo	mer ID	TP7	at 2.2	TP7 at 3.0
			Samp	le Type	LPL	SOLID	SOLID
			Samplin	-	23/05/2022	23/05/2022	23/05/2022
Analysis	Method Code	MDL		Accred.		20.00.2022	
tert-Butylbenzene	VOCHSAS	1	μg/kg^	UM		<1	
Tetrachloroethene	VOCHSAS	3	μg/kg^	UM		<4	
Toluene	VOCHSAS	5	μg/kg^	UM		<7	
trans 1,2-Dichloroethene	VOCHSAS	1	μg/kg^	UM		<1	
trans 1,3-Dichloropropene	VOCHSAS	1	μg/kg^	UM		<1	
Trichloroethene	VOCHSAS	1	μg/kg^	U		<1	
Trichlorofluoromethane	VOCHSAS	1	μg/kg^	UM		<1	
Vinyl Chloride	VOCHSAS	1	μg/kg^	UM		<1	
Total Moisture at 35 C	CLANDPREP	0.1	%	N		23.7	26.8
Description of Solid Material	CLANDPREP		-	N		CLAY	CLAY
Equivalent Weight of Dry Material (kg)	Leachate Prep CEN 2:1		kg	N		0.400	
Fraction above 4 mm (%)	Leachate Prep CEN 2:1		%	N		0	
Fraction of non-crushable material (%)	Leachate Prep CEN 2:1		%	N		0	
Volume of Water for 2:1 Leach (ltr)	Leachate Prep CEN 2:1		I	N		0.658	
Weight of Sample Leached (kg)	Leachate Prep CEN 2:1		kg	N		0.542	
Asbestos Identification	SUB020		-	N		NAIIS	NAIIS
Asbestos Stage 2	SUB020	0.001	%	N			

CERTIFICATE OF ANALYSIS

ANALYSIS REQUESTED BY:

SOCOTEC UK Ltd

CONTRACT NO: S25826-7

Environmental Chemistry

DATE OF ISSUE: 06.06.22

PO Box 100 Burton upon Trent Staffordshire DE15 0XD

DATE SAMPLES RECEIVED: 30.05.22

DATE ANALYSIS COMPLETED: 06.06.22

DESCRIPTION: Twenty soil/loose aggregate samples each weighing approximately 0.1-1.3kg.

ANALYSIS REQUESTED: Qualitative and quantitative analysis of soil/loose aggregate samples for

mass determination of asbestos.

METHODS:

Qualitative - The samples were analysed qualitatively for asbestos by polarised light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative - The analysis was carried out using our documented in-house method based on HSE Contract Research Report No. 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire sample, detailed analysis of a representative sub-sample and quantification by hand picking/weighing and/or fibre counting/sizing as appropriate.

RESULTS:

Initial Screening

Asbestos was detected in one of the soil samples by stereo-binocular and polarised light microscopy.

A summary of the qualitative and quantitative results are given in Tables 1 & 2 respectively.

www.iom-world.org

Registered Address: Research Avenue North, Riccarton, Edinburgh, EH14 4AP, United Kingdom Tel: 0131 449 8000 Fax: 0131 449 8084 Email: iom@iom-world.org

IOM CONSULTING LIMITED, registered in Scotland No. SC205670

Page 1 of 3

CONTRACT NO: \$25826-7 **DATE OF ISSUE:** 06.06.22

RESULTS: (cont.)

Table 1: Qualitative Results

SOCOTEC Job I.D: 22052067

IOM sample number	SOCOTEC Sample ID	Client Sample ID	ACM type detected	PLM result
S25826-12	22052067-001	TP4 at 0.2	-	No Asbestos Detected
S25826-13	22052067-002	TP4 at 0.6	-	No Asbestos Detected
S25826-14	22052067-003	TP4 at 1.2	Loose Insulation ²	Chrysotile
S25826-15	22052067-004	TP4 at 1.8	-	No Asbestos Detected
S25826-16	22052067-005	TP1 at 0.2	-	No Asbestos Detected
S25826-17	22052067-006	TP1 at 0.6	-	No Asbestos Detected
S25826-18	22052067-007	TP1 at 2.0	-	No Asbestos Detected
S25826-19	22052067-008	TP1 at 3.0	-	No Asbestos Detected
S25826-20	22052067-009	TP2 at 0.25	-	No Asbestos Detected
S25826-21	22052067-010	TP2 at 0.8	-	No Asbestos Detected
S25826-22	22052067-011	TP2 at 1.2	-	No Asbestos Detected
S25826-23	22052067-012	TP2 at 3.0	-	No Asbestos Detected
S25826-24	22052067-013	TP3 at 0.35	-	No Asbestos Detected
S25826-25	22052067-014	TP3 at 0.75	-	No Asbestos Detected
S25826-26	22052067-015	TP3 at 1.8	-	No Asbestos Detected
S25826-27	22052067-016	TP3 at 2.9	-	No Asbestos Detected
S25826-28	22052067-017	TP7 at 0.2		No Asbestos Detected
S25826-29	22052067-018	TP7 at 0.9	-	No Asbestos Detected
S25826-30	22052067-019	TP7 at 2.2	-	No Asbestos Detected
S25826-31	22052067-020	TP7 at 3.0	-	No Asbestos Detected

Our detection limit for this method is 0.001%.

Table 2: Quantitative Analysis Results

SOCOTEC Sample ID	Client Sample ID	Sample Weight (g)	% Asbestos in Sample from ACM's	% Asbestos in Sample as Unbound Fibres	Total % Asbestos in Sample
22052067-003	TP4 at 1.2	1269	-	0.002	0.002

Our limit of quantification for gravimetric analysis of soil samples is 0.001%.

CONTRACT NO: \$25826-7 **DATE OF ISSUE:** 06.06.22

COMMENTS:

¹ ACM was visible during initial examination of the sample.

IOM Consulting cannot accept responsibility for samples that have been incorrectly collected or despatched by external clients.

Any opinions and interpretations expressed herein are out with the scope of our UKAS accreditation.

AUTHORISED BY:

J Simpson

Senior Laboratory Analyst

² ACM was detected during microscopic examination of the sample.

Project Name: Imingham Dock
Project No: 22052067
Date Issued: 22/06/2022

Deviating Sample Repo	<u>rt</u>					Je		
			iner			Incorrect/No Preservative	ate	
			t Conta	t Label	ace	:t/No Pr	pling D	Time
Sample Reference	Text ID	Reported Name	Incorrect Container	Incorrect Label	Headspace	Incorrec	No Sampling Date	Holding Time
TP4 at 0.2	22052067-001	PHSOIL						√
TP4 at 0.2	22052067-001	GROHSA/BTEXHSA						✓
TP4 at 0.2	22052067-001	VOCHSAS						√
TP4 at 0.2	22052067-001	BTEXHSA						√
TP4 at 0.6	22052067-002	PHSOIL						✓
TP4 at 1.2	22052067-003	PHSOIL						✓
TP4 at 1.8	22052067-004	PHSOIL						✓
TP4 at 1.8	22052067-004	GROHSA/BTEXHSA						✓
TP4 at 1.8	22052067-004	VOCHSAS						✓
TP4 at 1.8	22052067-004	BTEXHSA						√
TP1 at 0.2	22052067-005	PHSOIL						√
TP1 at 0.2	22052067-005	GROHSA/BTEXHSA						√
TP1 at 0.2	22052067-005	VOCHSAW						√
TP1 at 0.2	22052067-005	VOCHSAS			✓			√
TP1 at 0.2	22052067-005	BTEXHSA						√
TP1 at 0.6	22052067-006	PHSOIL						√
TP1 at 2.0	22052067-007	PHSOIL						√
TP1 at 2.0	22052067-007	GROHSA/BTEXHSA						√
TP1 at 2.0	22052067-007	VOCHSAS						✓
TP1 at 2.0	22052067-007	BTEXHSA						✓
TP1 at 3.0	22052067-008	PHSOIL						√
TP2 at 0.25	22052067-009	PHSOIL						✓
TP2 at 0.25	22052067-009	GROHSA/BTEXHSA						✓
TP2 at 0.25	22052067-009	VOCHSAW						√
TP2 at 0.25	22052067-009	VOCHSAS			✓			√
TP2 at 0 25	22052067 009	BTEXHSA						√
TP2 at 0.8	22052067-010	PHSOIL						√
TP2 at 1.2	22052067-011	PHSOIL						√

Project Name: Imingham Dock Project No: 22052067 Date Issued: 22/06/2022

TP2 at 3.0	22052067-012	PHSOIL				
TP2 at 3.0	22052067-012	GROHSA/BTEXHSA				✓
TP2 at 3.0	22052067-012	VOCHSAS				✓
TP2 at 3.0	22052067-012	BTEXHSA				✓
TP3 at 0.35	22052067-013	PHSOIL				✓
TP3 at 0.75	22052067-014	PHSOIL				✓
TP3 at 0.75	22052067-014	GROHSA/BTEXHSA				✓
TP3 at 0.75	22052067-014	VOCHSAS				✓
TP3 at 0.75	22052067-014	BTEXHSA				✓
TP3 at 1.8	22052067-015	PHSOIL				✓
TP3 at 2.9	22052067-016	PHSOIL				✓
TP3 at 2.9	22052067-016	GROHSA/BTEXHSA				✓
TP3 at 2.9	22052067-016	VOCHSAW				✓
TP3 at 2.9	22052067-016	VOCHSAS				✓
TP3 at 2.9	22052067-016	BTEXHSA				✓
TP7 at 0.2	22052067-017	PHSOIL				✓
TP7 at 0.2	22052067-017	GROHSA/BTEXHSA				✓
TP7 at 0.2	22052067-017	VOCHSAS				✓
TP7 at 0.2	22052067-017	BTEXHSA		✓		✓
TP7 at 0.9	22052067-018	PHSOIL				✓
TP7 at 0.9	22052067-018	GROHSA/BTEXHSA				✓
TP7 at 0.9	22052067-018	VOCHSAS				✓
TP7 at 0.9	22052067-018	BTEXHSA				✓
TP7 at 2.2	22052067-019	PHSOIL				✓
TP7 at 2.2	22052067-019	GROHSA/BTEXHSA				✓
TP7 at 2.2	22052067-019	VOCHSAS				✓
TP7 at 2.2	22052067-019	BTEXHSA				✓
TP7 at 3.0	22052067-020	PHSOIL				

Project Name: Imingham Dock Project No: 22052067 Date Issued: 22/06/2022

Analysis Method

WSLM59

Analysis	Analysis Type	Analysis Method
AMMAR	INORGANIC	As Received
BTEXHSA	ORGANIC	As Received
CLANDPREP	PHYS	As Received
GROHSA	ORGANIC	Unfiltered
GROHSA/BTEXHSA	ORGANIC	Filtered
ICPBOR	METALS	Air Dried & Ground
ICPMSS	METALS	Air Dried & Ground
ICPMSW (Dissolved)	METALS	Filtered
ICPSOIL	METALS	Air Dried & Ground
ICPWATVAR (Dissolved)	METALS	Filtered
KONENS	INORGANIC	Filtered
Leachate Prep CEN 2:1	PHYS	As Received
PAHMSUS	ORGANIC	As Received
PHCONDW	INORGANIC	Filtered
PHEHPLCUV	ORGANIC	Filtered
PHEMS	ORGANIC	As Received
PHSOIL	INORGANIC	As Received
SFAPI	INORGANIC	As Received
SUB020	SUBCON	
SVOCSW	ORGANIC	As Received
TPHFID	ORGANIC	Filtered
TPHFID (Aliphatic)	ORGANIC	Filtered
TPHFID (Aromatic)	ORGANIC	Filtered
TPHFIDUS (Aliphatic)	ORGANIC	As Received
TPHFIDUS (Aromatic)	ORGANIC	As Received
VOCHSAS	ORGANIC	As Received
VOCHSAW	ORGANIC	Unfiltered
WSLM13	INORGANIC	Filtered

INORGANIC

Air Dried & Ground

Project Name: Imingham Dock Project No: 22052067 Date Issued: 22/06/2022

Result Report Notes

Letters alongside results signify that the result has associated report notes. The report notes are a follows:

<u>Letter</u>	<u>Note</u>
А	Due to the matrix of the sample the laboratory has had to deviate from our standard protocols to be able to process the sample and provide a result. Where applicable the accreditation has been removed and this should be taken into consideration when utilising the data.
В	The QC associated with this result has not wholly met the QMS requirements, the accreditation has therefore been removed. However, the Laboratory has confidence in the performance of the method as a whole and that the integrity of the data has not been significantly compromised.
С	Due to matrix interference the internal standard and/or surrogate has not met the QMS requirements. This should be taken into consideration when utilising the data.
D	A non-standard volume or mass has been used for this test which has resulted in a raised detection limit.
Е	Due to recoveries beyond our calibration range and following the maximum size of dilution allowed, the result cannot be quantified and as such the result will appear as a greater than symbol (>) with the accreditation removed. This data should be used for indicative purposes only.
F	Based on the sample history, appearance and smell a dilution was applied prior to testing. Unfortunately, the result is either above (>) or below (<) our calibration range. Results above our calibration range have accreditation removed. The data should be used for indicative purposes only.
G	The day 5 oxygen reading was below the capability of the instrument to detect, and therefore the calculated BOD

HWOL Acronym Key

Acronym

HS	Headspace Analysis
EH	Extractable Hydrocarbons - i.e everything extracted by the solvent(s)
CU	Clean up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only

Description

has been reported unaccredited for guidance purposes only.

Operator to indicate cumulative e.g. EH_CU+HS_1D_Total

Project Name: Imingham Dock Project No: 22052067 Date Issued: 22/06/2022

Additional Information

This report refers to samples as received, and SOCOTEC UK Ltd takes no responsibility for accuracy or competence of sampling by others.

Results within this report relate only to the samples tested.

In the accreditation column of analysis report the codes are as follows:

U = UKAS accredited analysis M = MCERT accredited analysis N = Unaccredited analysis

Any units marked with ^ signify results are reported on a dry weight basis of 35 ° C.

All Air Dried and Ground Samples (ADG) are oven dried at less than 35° c.

This report shall not be reproduced except in full and with approval from the laboratory.

Opinions and interpretations given are outside the scope of our UKAS accreditation.

Any samples marked with * are not covered by our scope of UKAS accreditation. If applicable, further report notes have been added.

Any solid samples where the Major Constituents are not one of the following (Sand, Silt, Clay, Made Ground) are not one of our accredited matrix types.

Any samples marked with ‡ have had MCERTS accreditation removed for this result

Any samples marked with a tick in the deviant table is deviant for the specific reason.

Any samples reported as IS, NA, ND mean the following:

IS = Insufficient Sample to complete analysis

NA = Sample is not amenable for the required analysis

ND = Results cannot be determined

Our deviating sample report does not include deviancy information for Subcontracted analysis. Please see the report from the Subcontracted lab for information regarding any deviancies for this analysis.

End of Certificate of Analysis

Project number: 60664611

Annex B Trial Pit Logs

Prepared For: Associated British Ports AECOM

Style: AGS4_AECOM_TP2 File: C:\USERS\JAMES.PENNY\DOCUMENTS\GINT\GINT DATABASE.GPJ Printed: 09/06/2022 08:57:08 Client: Associated British Ports Project: Immingham Eastern Ro-Ro Terminal. Record of Trial Pit Contract No: TP1 60664611 Samples & in situ Tests Strata Reduced Depth No./ Depth Test Results Legend **DESCRIPTION** (Thick-ness) Level Type Light grey GRAVEL. Gravel is fine to coarse, rounded to angular of probable clinker and crushed stone. Terram at base [MADE GROUND] 0.20 ES Dark black very sandy GRAVEL. Gravel is fine to coarse of probable clinker, probable slag, coal and brick. Sand is fine. Slight organic odour [MADE GROUND] (0 30) Light brown to brown sandy GRAVEL. Gravel is fine to coarse, rounded to angular of black fissile mudstone, probable clinker, probable slag with occasional brick. Sand is medium to coarse [MADE GROUND] 0.60 FS (0 30) 0.80 Soft brownish, dark grey to black mottled CLAY [REWORKED NATURAL] (1.70)ES 2.00 Firm to stiff brown slightly silty CLAY with frequent dark grey to black thinly interbedded black bands of silt [REWORKED NATURAL] (0 50) 3.00 3.00 Reached scheduled depth **GENERAL REMARKS** No groundwater encountered, trial pit completed at target depth of 3.0m. All depths are m bgl, and thicknesses and trial pit dimensions are in m. Consistencies and densities based on hand tests. 2.00 D 0.60 С Exploratory hole logs should be read in conjunction with corresponding Key Sheets Logged by: Equipment: Coordinates (OS NGR): Ground Level: Date: AGS JW JCB 3CX Easting: 519369.00m Not surveyed Start: 23/05/2022 Contractor: Northing: 415545.00m End: 23/05/2022 N/A Sheet 1 of 1 F NAL

Style: AGS4_AECOM_TP2 File: C:\USERS\JAMES.PENNY\DOCUMENTS\GINT\GINT DATABASE.GPJ Printed: 09/06/2022 08:57:09 Client: Associated British Ports Project: Immingham Eastern Ro-Ro Terminal. Record of Trial Pit Contract No: TP2 60664611 Samples & in situ Tests Strata Reduced Depth No./ Depth Test Results Legend **DESCRIPTION** (Thick-ness) Level Type Light grey GRAVEL. Gravel is fine to coarse, rounded to angular of probable clinker and crushed stone. Terram at base [MADE GROUND] Dark black very sandy GRAVEL. Gravel is fine to coarse, rounded to angular of probable clinker, probable slag, coal, brick, wood and black fissile mudstone. Sand is fine [MADE GROUND] 0.25 ES Soft dark brown to dark grey mottled gravelly CLAY. Gravel is fine to coarse, rounded to angular of coal. Occasional cobbles of rounded to angular coal [MADE GROUND] (0 50) 0.80 FS 0.90 Soft brownish, dark grey to black mottled CLAY [REWORKED NATURAL] (1.70)ES 2.00 Firm brown fibrous PEAT. 2 70 Firm to stiff brownish to dark grey mottled slightly silty CLAY with clods of light brown stiff to very stiff clay with occasional rootlets [REWORKED NATURAL] (0.30)3.00 3.00 Reached scheduled depth **GENERAL REMARKS** No groundwater encountered, trial pit completed at target depth of 3.0m. All depths are m bgl, and thicknesses and trial pit dimensions are in m. Consistencies and densities based on hand tests. 2.00 D 0.60 С Exploratory hole logs should be read in conjunction with corresponding Key Sheets Logged by: Equipment: Coordinates (OS NGR): Ground Level: Date: AGS JW JCB 3CX Easting: 519604.00m Not surveyed Start: 23/05/2022 Contractor: Northing: 415389.00m End: 23/05/2022 N/A Sheet 1 of 1

F NAL

Style: AGS4_AECOM_TP2_File: C:\USERS\JAMES.PENNY\DOCUMENTS\GINT\GINT DATABASE.GPJ | Printed: 09/06/2022 08:57:11 Client: Associated British Ports Project: Immingham Eastern Ro-Ro Terminal. Record of Trial Pit Contract No: TP3 60664611 Samples & in situ Tests Strata Reduced Revel Depth No./ Depth Test Results **DESCRIPTION** (Thick-ness) Level Type Light grey GRAVEL. Gravel is fine to coarse, rounded to angular of probable clinker and crushed stone. Terram at base [MADE GROUND] (0.30)0.30 Firm light brown slightly sandy slightly gravelly CLAY. Gravel is fine to medium, angular of black mudstone and well-rounded white chalk [REWORKED NATURAL] 0.35 0.75 ES (1 60) 1 80 FS 1.90 Black slightly fibrous PEAT 2.00 Soft brownish slightly sandy slightly silty CLAY with clods of grey silty clay and clods of fine brown sand [REWORKED NATURAL] (0 90) 2.90 Reached scheduled depth **GENERAL REMARKS** No groundwater encountered, trial pit completed at target depth of 2.9m. All depths are m bgl, and thicknesses and trial pit dimensions are in m. Consistencies and densities based on hand tests. 2.00 D 0.60 С Exploratory hole logs should be read in conjunction with corresponding Key Sheets Logged by: Equipment: Coordinates (OS NGR): Ground Level: Date: AGS JW JCB 3CX Easting: 519895.00m Start: 23/05/2022 Not surveyed Contractor: Northing: 415240.00m End: 23/05/2022 N/A Sheet 1 of 1 F NAL

Style: AGS4_AECOM_TP2_File: C:\USERS\JAMES.PENNY\DOCUMENTS\GINT\GINT DATABASE.GPJ | Printed: 09/06/2022 08:57:12 Client: Associated British Ports Project: Immingham Eastern Ro-Ro Terminal. Record of Trial Pit Contract No: TP4 60664611 Samples & in situ Tests Strata Reduced Depth No./ Depth Test Results **DESCRIPTION** Legend (Thick-ness) Level Type Light grey GRAVEL. Gravel is fine to coarse, rounded to angular of probable clinker and crushed stone. Terram at base [MADE GROUND] 0.20 ES Mul icoloured sandy GRAVEL. Gravel is medium to coarse, frequent rounded to angular of probable clinker and crushed stone. Sand is brown fine and loamy. Bricks, rebar, cables, pipes (including one metal pipe 1.2m long, 200mm thick) and fragments of plastic coated fibre-glass sheets [MADE GROUND] 0.60 FS (0 90) Mutlicoloured clayey GRAVEL. Gravel is medium to coarse, frequent rounded to angular of probable clinker and crushed stone. Clay is dark brown. Bricks, rebar, cables, pipes (including one metal pipe 1.2m long, 200mm thick) and fragments of plastic coated fibre-glass sheets [MADE GROUND] 1.20 ES (0.70) 1.80 1.8 Terminated due to water ingress at 1.80m bgl **GENERAL REMARKS** Groundwater strike at 1.8m which rose to 1.6m after 10 minutes, trial pit terminated due to water ingress. All depths are m bgl, and thicknesses and trial pit dimensions are in m. Consistencies and densities based on hand tests. 2.00 D В 0.60 С Exploratory hole logs should be read in conjunction with corresponding Key Sheets Logged by: Equipment: Coordinates (OS NGR): Ground Level: Date: AGS JW JCB 3CX Easting: 520249.00m Not surveyed Start: 23/05/2022 Contractor: Northing: 415023.00m End: 23/05/2022 N/A Sheet 1 of 1 F NAL

Style AGS4_AECOM_TP2 File C \usefta SESS\JAMES.PENINY\DOCUMENTS\GINT\GINT DATABASE.GPJ Printed 07/07/2022 13 2618 Client: Associated British Ports Project: Immingham Eastern Ro-Ro Terminal. Record of Trial Pit Contract No: TP5 60664611 Strata Samples & in situ Tests Water Level Depth Reduced No./ Depth Test Results Legend **DESCRIPTION** (Thick-ness) Level Type Mutlicoloured sandy bouldery GRAVEL. Gravel is fine to coarse, cobbles and boulders rounded to angular of crushed stone, brick, probable clinker, probable slag, probable ash and coal [MADE GROUND] (1.10) 0.80 FS 1.10 Soft to firm brownish grey to dark grey mot led slightly sandy slightly gravelly CLAY. Gravel is fine to medium well rounded chalk. Occasional lenses of light brown fine to medium sand. Occasional coal and brick [MADE GROUND / REWORKED NATURAL] 1.30 ES (1.70) 2.30 ES 2.80 Firm dark grey CLAY with clods of soft brown clay and occasional peat and brick [MADE GROUND / REWORKED NATURAL] (0.40)Dark brown to black PEAT 3.30 3.3 Reached scheduled depth **GENERAL REMARKS** Groundwater strike at 3.3m which rose to 3.2 after 20 minutes, trial pit completed at target depth 3.3m. All depths are m bgl, and hicknesses and trial pit dimensions are in m. Consistencies and densities based on hand tests. -2.00D 0.60 С Exploratory hole logs should be read in conjunction with corresponding Key Sheets Logged by: Equipment: Coordinates (OS NGR): Ground Level: Date: AGS JW JCB 3CX Easting: 520400.00m Not surveyed Start: 24/05/2022 Contractor: Northing: 415293.00m End: 24/05/2022 N/A Sheet 1 of 1 FINAL

Style: AGS4_AECOM_TP2 File: C:\USERS\JAMES.PENNY\DOCUMENTS\GINT\GINT DATABASE.GPJ Printed: 09/06/2022 08:57:14 Client: Associated British Ports Project: Immingham Eastern Ro-Ro Terminal. Record of Trial Pit Contract No: TP6 60664611 Samples & in situ Tests Strata Reduced Depth No./ Depth Test Results **DESCRIPTION** Legend (Thick-ness) 0.05 Level Type TOPSOIL Light grey GRAVEL. Gravel is fine to coarse, rounded to angular of probable clinker and crushed stone [MADE GROUND] ES 0.15 White to dark grey bouldery cobbley SAND. Sand is coarse, cobbles and boulders sub-rounded to angular of white chalk and occasional dark grey to black flint. Terram at base [MADE GROUND] (0 55) 0.80 Soft to firm dark brown slightly sandy sligh ly gravelly CLAY with lenses of brown fine sand. Gravel is white medium well rounded chalk. Coarse gravel to boulders of bricks. Plastic bags, plas ic sheeting and clay pipe [MADE GROUND] 0.80 (0.60)1.30 ES Soft to firm brownish, grey to dark grey mottled slightly sandy gravelly CLAY. Gravel is white fine to medium well rounded chalk. Frequent lenses of light brown fine to medium sand [REWORKED NATURAL] 1.60 FS (1 00) Black pseudo-fibrous PEAT 2.50 Firm dark grey CLAY with clods of firm brown clay and occasional PEAT [REWORKED NATURAL] (0.50)3.00 Reached scheduled depth GENERAL REMARKS Some water ingress along terram at 0.80m (does not fill base of trial pit), trial pit completed at target depth of 3.0m. All depths are m bgl, and hicknesses and trial pit dimensions are in m. Consistencies and densities based on hand 2.00 D В 0.60 С Exploratory hole logs should be read in conjunction with corresponding Key Sheets Logged by: Equipment: Coordinates (OS NGR): Ground Level: Date: AGS JW JCB 3CX Easting: 520505.00m Not surveyed Start: 24/05/2022 Contractor: Northing: 415373.00m End: 24/05/2022 N/A Sheet 1 of 1 F NAL

Style: AGS4_AECOM_TP2_File: C:\USERS\JAMES.PENNY\DOCUMENTS\GINT\GINT DATABASE.GPJ Printed: 09/06/2022 08:57:15 Client: Associated British Ports Project: Immingham Eastern Ro-Ro Terminal. Record of Trial Pit Contract No: TP7 60664611 Samples & in situ Tests Strata Reduced Revel Depth No./ Depth Test Results Legend **DESCRIPTION** (Thick-ness) Level Type TOPSOIL 0.10 Dark grey to black cobbley gravelly SAND. Gravel is fine to coarse, cobbles rounded to agular of chalk, wood, brick, slag, clinker and coal [MADE GROUND] 0.20 ES Brown cobbley SAND. Sand is medium. Cobble is sub-angular of chalk, brick, clinker and cables [MADE GROUND] (0 35) 0.60 Soft to firm brown slightly gravelly sandy SILT. Gravel is fine to medium, subrounded to angular of white chalk and black fissile mudstone [REWORKED NATURAL] (0.50)0.90 FS Soft to firm brownish, grey to dark grey mottled CLAY [REWORKED NATURAL] 1.80 (1 90) 2.10 2.20 ES 3.00 3.00 Reached scheduled depth **GENERAL REMARKS** Groundwater strikes at 1.8 and 2.8m, water rose from 3.0m to 2.8m after 20minutes, trial pit completed at target depth 3.0m. All depths are m bgl, and thicknesses and trial pit dimensions are in m. Consistencies and densities 2.00 based on hand tests. D В 0.60 С Exploratory hole logs should be read in conjunction with corresponding Key Sheets Logged by: Equipment: Coordinates (OS NGR): Ground Level: Date: AGS JW JCB 3CX Easting: 520761.00m Not surveyed Start: 24/05/2022 Contractor: Northing: 415798.00m End: 24/05/2022 N/A Sheet 1 of 1 F NAL

Project number: 60664611

Annex C Trial Pit Photolog

Prepared For: Associated British Ports AECOM

PHOTOGRAPHIC LOG

Survey date: 23-24/05/2022

Immingham Dock, North East Lincolnshire, DN40 2LZ

Project No. 60664611

Photograph 1

TP1, located at (519369, 415545) and constructed to a depth of 3.0m.

Photograph 2

Spoil from TP1, located at (519369, 415545) and constructed to a depth of 3.0m.

PHOTOGRAPHIC LOG

Survey date: 23-24/05/2022

Immingham Dock, North East Lincolnshire, DN40 2LZ

Project No. 60664611

Photograph 3

TP2, located at (519604, 415389) and constructed to a depth of 3.0m.

Photograph 4

Spoil from TP2, located at (519604, 415389) and constructed to a depth of 3.0m.

Survey date: 23-24/05/2022

Immingham Dock, North East Lincolnshire, DN40 2LZ

Project No. 60664611

Photograph 5

TP3, located at (519895, 415240) and constructed to a depth of 2.9m.

Photograph 6

Spoil from TP3, located at (519895, 415240) and constructed to a depth of 2.9m.

Survey date: 23-24/05/2022

Immingham Dock, North East Lincolnshire, DN40 2LZ

Photograph 7

TP4, located at (520249, 415023) and constructed to a depth of 1.8m. Terminated due to water ingress.

Photograph 8

Spoil from TP4, located at (520249, 415023) and constructed to a depth of 1.8m. Terminated due to water ingress.

Survey date: 23-24/05/2022

Immingham Dock, North East Lincolnshire, DN40 2LZ

Photograph 9

TP5, located at (520400, 415293) and constructed to a depth of 3.3m.

Photograph 10

Spoil from TP5, located at (520400, 415293) and constructed to a depth of 3.3m.

Survey date: 23-24/05/2022

Immingham Dock, North East Lincolnshire, DN40 2LZ

Photograph 12 Spoil from TP6, located at (520505, 415373) and constructed to a depth of 3.0m.

Survey date: 23-24/05/2022

Immingham Dock, North East Lincolnshire, DN40

Photograph 13

TP7, located at (520761, 415798) and constructed to a depth of 3.0m.

Photograph 14

Spoil from TP7, located at (520761, 415798) and constructed to a depth of 3.0m.

Project number: 60664611

Annex D Chemical Data Screen

Prepared For: Associated British Ports AECOM

AECOM GD P ckies Screened Soil Data

xx Exceedance of Criteria (column E)

					Lab Sample Number Sample Reference	1 6323 TP01	1 63235 TP01	1 63236 TP01	1 63237 TP06	1 63238 TP06	1 63239 TP0	1 632 0 TP07	1 632 1 TP07	1 632 2 TP16	1 632 3 TP16	1 632 TP16	1 632 5 TP19	1 632 6 TP2	1 632 7 TP2	1 63915 TP13
					Sample Number	D1	D2	D3	D1	D1	D1	D1	D2	D1	D1	D2	D1	D1	D2	D1
					Depth (m) Strata	0.05-0.15 Made Ground	0.10-0.50 Made Ground	0.7 Made Ground	0 20 0.50 Made Ground	0.20-0.50 Made Ground	0.30-0.50 Made Ground	0.00-0.30 Made Ground	0.30-0.50 Made Ground	0.7 Possib e Made Ground	0.20-0.50 Made Ground	0.50-1 00 Made Ground	0. Made Ground	0. 0-0.70 Made Ground	0 70-0.90 Clay	0.50-0.80 Made Ground
					Date Sampled	25 02/2020	25/02/2020	25 02 2020	2 /02/2020	2 /02/2020	28/02/2020	25/02/2020	25/02 2020	26/02/2020	25/02/2020	25/02/2020	27/02/2020	27/02 2020	27/02/2020	26/02/2020
					Time Taken	None Supplied	None Supplied	None Supplied	None Supp ied	None Supplied	None Supplied	None Supp ied	None Supp ied	None Supplied	None Supplied	None Supplied	None Supp ied	None Supp ied	None Suppl ed	None Supplied
Determinand	Units %	L mit of Detection	Accreditation NONE	GAC										,				,		
Sto e Co te t Moisture Content	%	N/A	NONE			18	-0.1 16	<0.1 17	33	15	< 0.1 19	7.6	9.3	<0.1 15	13	< 0.1 15	1	-01 1	<0.1 18	1
Total mass of samp e received Asbestos in So I	kg Type	0.001 N/A	NONE ISO 17025			0. Not-detected	0. Not-de ected	0. Not-detected	0. Not-detected	0. 3 Not-detec ed	0 37 Not-detec ed	0. 1 Not-detected	0. Not-de ected	0. Not-detected	0. 1 Not-detected	0. 3 Not-detected	0. 6 Not-detected	0. 6 Not-de ected	0. 3 Not-detected	2 Not-detected
Pagestos II 30 I	1100	100	100 17423	1	_	NOT USED SO	Not-de ecied	Nor-detected	Nor-deserted	NOT GREEK RO	Nor-detec ed	NO-DESCRIPTION	Not the ected	NO-DESECTED	Nor-detected	Nor-desected	Noroelected	Norde edea	Nor-delected	Nor-deserted
General Inorganics					_															
pH - Automa ed Total C a ide	pH Units mg/kg	N/A 1	MCERTS MCERTS	150		10	7.8	7.5	7.	8.	7.9	10.	8.9	7.9	10.2	10.1	9.5	9	7.9	8
Total Sulphate as SO	%	0.005	MCERTS MCERTS			0.195		0.615		1. 9 0.661			0.503		0.26			0.38	0.075 0.095	0.172
Total Sulphur Ammonium as NH	mg/kg	0.5	MCERTS			0.216 0.6		0.228 6.2		8.3			0.272 12		0 202 0.5			0.323 30	32	0.17
Organ c Matter	%	0.1	MCERTS			6.	2.	2.3	6.	2.9	3.8	0.6	3.3	2.5	3.9		7		2.1	2.7
Total Phenois Total Phenois (monohydric)	mg/kg	1 1	MCERTS	I	٦	<1.0	<1.0	<1.0	<1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	< 1.0	<1.0	<1.0	<1.0	<1.0
Speciated PAHs			•		_		•	•	•			•		•		•	•		•	,
Naphthalene	mg/kg	0.05	MCERTS	60 97000		<0.05	0.05	<0.05	<0.05	0.05	< 0.05	0.05	0.21	0. 5	3.3	0.7	0.76	29	<0.05	0.72
Acenaphthylene Acenaphthene	mg/kg mg/kg	0.05	MCERTS MCERTS	97000 97000	1	<0.05 <0.05	0.05	<0.05 <0.05	<0.05	0.05	< 0.05	0.05	< 0.05	<0.05 0.26	0.79	0 3 0 27	0.2 0.32	8.9	<0.05 ×0.05	<0.05 <0.05
Fluorene	mg/kg mg/kg	0.05	MCERTS	68000		<0.05	0.05	<0.05	<0.05	0.31	< 0.05	0.05	<0.05	0.33	2.1	0. 6	0.39	39	×0.05	<0.05
Phenanthrene Anthracene	mg/kg mg/kg	0 05 0 05 0 05	MCERTS MCERTS	22000 5 0000		0.98	1.1	<0.05	0.81 0.21	2.8 0.67	< 0.05	0.05	0. 6 <0.05	2.9 0.73	17 6.9	5 16	3.1 0.76	230 63	<0.05	1.1 0.21
Fluoranthene	mg/kg	0.05	MCERTS MCERTS	23000		1.8	0.83	<0.05	17	.2	< 0.05	0.05	0.9	.1	20	11	5.1	380	<0.05	1.1
Pyrene Benzo(a)anthracene	mg/kg mg/kg	0.05	MCERTS	5 000 170		1.3	0.8 0. 2	<0.05	1.1	3.2	< 0.05	0.05	0.85 0.55	3.5	20 19	68	2.9	190	<0.05 <0.05	0.83
Chrysene Benzo(b)fluoranthene	mg/kg mg/kg	0.05	MCERTS MCERTS	350		1.3	0.51	< 0.05	0.96	2.9 3.2	< 0.05	0.05	0. 2	1. 1.3	1 18	52	2.6 3.5	160	<0.05	0.68
Benzo(k)fluoranthene	mg/kg	0 05 0 05	MCERTS	1200		0.73	0.2	<0.05	0.52	1	< 0.05	0.05	0.31	0.93	5.5	28	0.81	96	<0.05	0.27
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	0 05 0 05	MCERTS MCERTS	35 510		0.55	0.2	<0.05	0.7	2	< 0.05	0.05	0.	1.2 0.53	1 6	5.1 2.3	2.1 1.2	150 76	<0.05	0. 3
Dibenz(a,h)anthracene	mg/kg mg/kg	0.05	MCERTS MCERTS	3.6		<0.05	0.05	<0.05	<0.05 0.5	0.05	< 0.05	0.05	< 0.05	<0.05 0.66	1.8 6.6	0.73 2.5	0.5	22 85	<0.05	<0.05 0.28
Benzo(ghi)perylene	iligikg	0.00	MUERTO	000	J	0.7	0.05	<0.05	0.5	1.3	< 0.05	0.05	<0.05	0.66	0.0	2.5	1.	85	<0.05	0.28
Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS]	11.9	.52	<0.80	9. 1	26.7	< 0.80	0.80	.69	20.3	156	60.9	30 3	20 0	<0.80	7.69
Heavy Metals / Metalloids	_				_															
Arsen c (agua regia extractable) Barium (agua reg a extrac ab e)	mg/kg mg/kg	1	MCERTS MCERTS	6 0 22000		9.3	18 130	13 130	18 120	12 220	16 100	<1.0	9.1 170	1 1 0	13	10 150	1 230	16 2 0	9.	17 110
Beryllium (aqua eg a extractable)	mg/kg	0.06	MCERTS MCERTS	12		3	1.1	0.98	2.6	2.6	1.2	2.5	2.2	1.8	1.8	1.5	1.8	3.	1.2	1.1
Boron (wa er solub e) Cad i (aq a egia e t acta le)	mg/kg mg/kg	0.2	MCERTS	2 0000		0.6	3.7 <0.2	2.8 <0.2	93	5.3 0.2	< 0.2	2.5 <0.2	3.9 <0.2	2.1	1.6 0.2	06	9.6 0.3	03	13 <0.2	1.6
Chromium (hexava en) Chromium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	9 8600		67	< .0 33	< .0	< .0	< .0	< .0 35	< .0 77	< .0	× 0	150	< .0	100	120	< 0	< .0 28
Copper (aqua regia extractable)	mg/kg	i	MCERTS	68000		100	23	25	3	27	22	13	31	37	51	7	69	93	21	37
Lead (aqua regia extractable) Me c (aq a egia e t acta le)	mg/kg mg/kg	0.3	MCERTS MCERTS	2330 350		92	33 r0.3	26 ∞0.3	7	36	29 03	16	23 r0.3	22 r0.3	6 0.3	-03	0.3	76	19	0.3
Nickel (agua reg a extractable)	mg/kg	1	MCERTS MCERTS	980		19	35	33	3	25	33	5.5	17	27	100	26	35 5.2	68 5.7	39	30
Selenium (aqua reg a extrac ab e) Vanadium (aqua reg a extractable)	mg/kg mg/kg	1	MCERTS	12000 9000		62	51	<1.0 5	77	53	50	53	3.8 63	3.2 0	75	77	51	71	36	37
Zinc (aqua regia extractable) Mag esi (ate sol le)	mg/kg mg/kg	1 5	MCERTS NONE	730000		320	100	98 190	190	120	93	38	69	99	180	160	200	270	7 69	66
Company (see see le)					_					100										
Monoaromatics & Oxygenates					7															
Benzene Toluene	μg/kg μg/kg	1	MCERTS MCERTS	50000 110000000	1		<1.0	<1.0	<1.0	<1.0	< 1.0	<1.0	<1.0	<1.0		< 1.0	-	-	<1.0	<1.0
Ethylbenzene	µg/kg	1	MCERTS MCERTS	13000000			<1.0	<1.0	<1.0	<1.0	< 1.0	<1.0	<1.0	<1.0		< 1.0		-	<1.0	<1.0
p & m-xylene o- e e	μg/kg μg/kg	1	MCERTS	1 000000		-	<1.0	<1.0	<1.0	<1.0	< 1.0	<1.0	<1.0	<1.0		< 1.0			<1.0	<1.0
MTBE (Methyl Ter iary Butyl Ether)	μg/kg	1	MCERTS	13000000]		<1.0	<1.0	<1.0	<1.0	< 1.0	<1.0	<1.0	<1.0		< 1.0			<1.0	<1.0
Petroleum Hydrocarbons					_															
TPH-CWG - A iphat c >EC5 - EC6 TPH-CWG - A iphat c >EC6 - EC8	mg/kg mg/kg	0.001	MCERTS MCERTS	5900 17000		-	<0.001 <0.001	<0.001	0.001	<0.001	< 0.001	<0.001	<0.001 <0.001	0.001		< 0.001	-	-	0.001	<0.001
TPH-CWG - Aiphat c >EC8 - EC10 TPH-CWG - Aiphat c >EC10 - EC12	mg/kg	0.001	MCERTS MCERTS	800 23000			<0.001	<0.001	0.001	<0.001	< 0.001	<0.001	<0.001	0.001		< 0.001			0.001	<0.001
TPH-CWG - Aiphat c >EC12 - EC16	mg/kg mg/kg	2	MCERTS	82000			<2.0	<2.0	<2.0	3.9	< 2.0	<2.0	<2.0	<2.0		5.2			<2.0	2.0
TPH-CWG - Aiphat c >EC16 - EC21 TPH-CWG - Aiphat c >EC21 - EC35	mg/kg mg/kg	8	MCERTS MCERTS			-	<8.0	<8.0	<8.0	27 120	< 8.0	<8.0	<8.0	<8.0		18 83			<8.0	8.0
TPH-CWG - A iphat c (EC5 - EC35)	mg/kg	10	MCERTS		1		<10	<10	<10	150	< 10	<10	<10	<10		110			<10	<10
TPH-CWG - Aromat c >EC5 - EC7	mg/kg	0.001	MCERTS	6000	Ī		<0.001	<0.001	0.001	<0.001	< 0.001	<0.001	<0.001	0.001		< 0.001			0.001	<0.001
TPH-CWG - Aromat c >EC7 - EC8 TPH-CWG - Aromat c >EC8 - EC10	mg/kg mg/kg	0.001	MCERTS MCERTS	110000 8100			×0.001	<0.001	0.001	<0.001	< 0.001	<0.001	<0.001	0.001		< 0.001			0.001	<0.001 -0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	28000	1		<1.0	<1.0	<1.0	<1.0	< 1.0	<1.0	<1.0	<1.0		37			<1.0	<1.0
TPH-CWG - Aromat c >EC12 - EC16 TPH-CWG - Aromat c >EC16 - EC21	mg/kg mg/kg	2 10	MCERTS MCERTS	37000 28000	1	-	<2.0 <10	<2.0 <10	<2.0	6 36	.7	<2.0 <10	<2.0 <10	3.8 15		12 58		-	<2.0 <10	2.0 <10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS MCERTS	28000			<10	<10	<10	130	10	<10	<10	26		120			<10	<10
TPH-CWG - Aromat c (EC5 - EC35	mg/kg	10	muERIS	1	J		<10	<10	2	170	33	<10	<10	5		200	-	-	<10	<10

Location	Nordic, Immingham				
Lab Reference (Sample Number)	1463266 / 1463267	1463268 / 1463269	1463270 / 1463271	1463272 / 1463273	1463274 / 1463275
Sampling Date	25/02/2020	24/02/2020	24/02/2020	26/02/2020	27/02/2020
Sample ID	TP01 WAC 3	TP05 WAC 1	TP06 WAC 2	TP13 WAC 4	TP24 WAC 5
Depth (m)	0.10-0.50	0.30-1.00	0.20-1.00	0.50-0.80	0 30-0.60
Strata	Made Ground				

Determinand	Units	Accrediation	DWS	EQS					
Arsenic	mg/l	UKAS	0.01	0.05	< 0.0011	0.0286	0.0434	< 0.0011	0.0275
Barium	mg/l	UKAS	13		0.0347	0.0358	0.0458	0.0259	0.019
Cadmium	mg/l	UKAS	0.005	0 00008	< 0.0001	<0.0001	<0 0001	< 0.0001	< 0.0001
Chromium	mg/l	UKAS	0.05		0.0006	< 0.0004	0.0009	< 0.0004	0.001
Copper	mg/l	UKAS	2	0.001	0.0068	0.0024	0.0052	0.0035	0.018
Mercury	mg/l	UKAS	0.001	0 00007	< 0.0005	< 0.0005	<0 0005	< 0.0005	< 0.0005
Molybdenum	mg/l	UKAS	0.07		0.0071	0.0127	0.0169	0.002	0.0674
Nickel	mg/l	UKAS	0.02	0.004	< 0.0003	0.0008	0.0006	< 0.0003	0.0092
Lead	mg/l	UKAS	0.01	0.0012	0.0071	0.0068	<0 0010	0.008	0.0041
Antimony	mg/l	UKAS	0.005		< 0.0017	< 0.0017	0 012	< 0.0017	0.017
Selenium	mg/l	UKAS	0.01		< 0.0040	< 0.0040	<0 0040	< 0.0040	< 0.0040
Zinc	mg/l	UKAS	6	0.0109	0.0046	0.012	0.0062	0.0057	0.019
Chloride	mg/l	UKAS	250	250	24	4.5	4	20	130
Fluoride	mg/l	UKAS	15	1	5 6	7.6	4.4	3	1.3
Sulphate	mg/l	UKAS	250	400	190	1400	1000	180	180
TDS	mg/l	UKAS			340	1300	910	310	430
Phenol Index (Mono	mg/l	UKAS			< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
DOC	mg/l				8 28	5.19	7.37	7 97	16 2

xx Exceedance of Criteria 1 (DWS)
xx Exceedance of Criteria 2 (EQS)
xx Exceedance of Criteria 1 and 2

AECOM

	## 275500F 00 275500F 002 275500F 003 275500F 0 4 2.7	22062 67-005 22062067-006 220-2067-007 22062067-008	205206F-008 2205208F-0 2205208F-0	22092087 0 2 22092087 0 3 2209	062 67-0 4 22062067-0 S	220 2007-0 6 22002007-0 7	2052067-0 8 22052067-0 9 22052067-020 2	\$2220.00 22052225-0-2 22052-25-003 22052220.004	22 52230-005 22052220 006 2052220-007 22052220 008
	02 06 2 8	02 44 2 3	025 08 2	3 436	075 8	29 02	09 22 3	44 4 4 4	08 2 23 23
Ma x	Soi Samo e Soi Samole Soi Samole Soi Samole Made G and Made G and Made G and	So I Samu te Soit Samu e Soit Samu e Soit Samu e Soit Samu e Made G ound Made G ound Cary I was hed natu al Cary I was hed natu al	So I Sample Soi Sample So I Sample Made G cond Made G cond Clay I eas ked na u a 1 C	Sot Sample Sot Sample So Cay Levo Red natural Clay Levo X dinau al Clay Le	ur San te Suit Sangle up hed ratu al Clauf eap led halv a t	So I Sample Soit Sample Cay (each had natural M. de Ground	So I Sample So I Sample So I Sample St I resolved about Covi resolved no. 1 Clav I resolved no. 2 1	of Sound Sold Sound Court we had sound and sound sound sound court we had sound court we had sound a sound s	Sulfamole Sol Sample Sol Sample Sol Sample Court and had natural Court and had no u.e. Court and had not u.e. Court and had no u.e.
	a* 2100 2002 00 10 22 00 2002 00 10 22 00 2 22 00 31 22 00 24 20 20 20 20 20 20 20 20 20 20 20 20 20	21 (6 2022 20 21 (6 2022 20 21 (6 2022 20 21 (6 2022 0	2109 2022 245 2109 2022 245 2209 2022 245	23 05 2 22 2 46 23 05 2022 230 230 6	6 2022 3 30 23 06 2022 3 30	23 65 2022 3 30 23 65 2022 5 30	2022 10 2022 12 2022 10 2	022 09-00 24 06 2022 09 00 24 06 2022 09 00 24 06 2022 09 00	405202 030 2405202 030 2405202 030 2405202 030
America and NY come (Subhassasiler's is N to to to 1 1 0 0 000000 0000000 000000 000000 000000	20 24 235 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	85 6 60 2 12	43 42 M	-2	23 5	F 11	11 11	11 293 02 81	7 1 1 1
M 1 0 20000					-17		-1 -1		
State et				-1	+2		-1 -1		
COMMON OF STATE OF ST	24 CA CA CA 25 47 84 76	GRAVE GRAVE C.A. C.A. 74 84 345 241	GNN6 CA CA 1 79 295	204 CA	CA CA 53 64	C A GRAG	CA CA CA 2 237 248	SMD CA CA CA 1 73 41 27	9000 CA CA CA 2 8 88 214
CTCRA on 16 90 9000	401	401	0.00	411	-0.0.2	-0175 -0170	013 413	41 402 403	40.3
1674 CM A 601 EG 600 Marke 9 0 00000 1674 C 9 A 6001 Marke 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000	208 208	1.0	22	-0.003	-0.00E -0.00E	011 2 102	200 200 200	-0.000 -0.00d
contained control or reging 8.3									
	24 22 2 24	7.5 277 295 3	79 98 37	4 01	02 16	14 21	72 37 5	12 1 22 4	25 24 4 52 14 94 19 72
Code un as CI me to 02 4 0	04 3 08	93 407 42 407	6 41 62	-03	43 43	03 04	93 401	97 93 93 94	2 03 03 03
Mir Go v as Ha mo ho 0 5 300	415 98 415 415	v01 v01 v01	41 41 41	O1 01	101 101	41 41	41 41 41	41 41 41	v13 v21 v21 v21
Mar Cu v 24 HS	214 229 21 24	41 41 41	44 24 24	- 12 -01 -01	101 101 101 101	21 21	21 21 71 71 71 71 71 71 71 71 71 71 71 71 71		45 01 01 01 17 02 01
	27 27 27		- 1 - 1						
						02			
Accessors hence 900 Miles 970000 Accessors hence 900 Miles 970000 Accessors hence 900 Miles 970000 Miles 97000 Miles 9700 Miles 97	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11 1. 11 1	22 21 2	40 0 40 H	42 00 42 00 42 00	- 623	31 3 3	4 11 11 11	33 11 21 2
	0.85 0.76 0.63 0.85 0.28 0.66 0.28 0.29	926 95 11 2 11 9 2 946 11 2 11	9.34 9.37 ···	10 0 4 2 10 0 1000	v2 09 v2 09 v2 09 v2 09	0 29	4 4 4	2 2 2 2	27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	047 036 024 04	1 11 11 1	** ** *	-0.0	-0 c0	-0 016		12 1 11 11	
No ene mo to o os stoco	-0.00 92 92 4.7	e 4 vi 2 vi	-00 9.5 -0	40 0 4039	v2 00 v2 00			276 9.4 41.0 40.1	4000 0.0 40 0
50 and 13 of years 20 to 20 to 30 to	048 02 028 029	266 6.9 0.2 0.1	97 444 o	-0.0	40 40	2 49	21 2 2	0 024	28 0.0 0.0 0.0
No. 100 100	01 4 21 01	N 19 d 2 025	n 10 -	-0.0	-0 09 -0 09	- 48	11 - 17	E	* ' ' ' ' '
at attach	42 76	74 84	7.0				12 8	11 71 1	11
245- ic to coheron me to 0.00 \$2000 246- ic to coheron me to 0.00 2.0	40.00	4012 40 2 4012 40 3	400	-011 -011	40	40 3 40 00 40 1 40 00	-00 -00 -00	* 05 400 400 4000 * 05 400 400	400 400
7.6 to 10 submoder									
2-Chi o cohenia 80 to 0 00 5800 2-Min violeni 80 to 0 00 8000	000	41		-01	40.00	0 1 20	947	- 15 - 400 -	100
2-N2 coherol no ho 0 03	40 03 x0 04	v0.1	-000	4036	v2 04	+0 4 +0 00	×0.00	× 55 ×2.04 ×0.04	v000 v000
6-Chip o 3-meth laterolin mo to 0.00 \$2000 \$2000 \$2000	40.00	48 43	40.00	-010	v2.04	+0 4 +0 00	1001 1001	v 50 vi 50 vi 50	100
e-fre coherent months 0.00 and	407	407	400	-01	40.07	-0 E +0 07	-00	4 407 408	407
Δ									
an Coaride mo to 0.5	418 418 418 418	408 408 403 407	411 411 47	-01	401 401	47 49	401 407	41 41 41	v28 v28 v28 v27
20 January	3 3 3 3	31 31 31 31	31 31 31	21 21	01 01	4 4	41 41 41		41 41 41 41
24 is to steepene make 4 530									
2.5 m, 5 m minutes	1	. 2	3		-0	,	2 2	427 40 41	
Mic vise dame so a 73	08 08		29	-0	-0	-0 32	02		
245 to bostonia moto 2 23 245 to bostonia moto 2 200		1 1 1		-	1		1 1		
2.4 (DR1 10) sense*	42 40	41 41	41	31	21	31 31	41 41	10 10 10	42 43
2-Ch o coach halene (so No. 0 900 2-Ch o coach halene (so No. 0 900 2-Ch o coach (so No. 0 900 2-Ch o		11 20		2			2 2	317 3 3	4 4
*									
2-01 coherci (mo to 0) 2-04 Mr to phenci (mo to 0)	0		4	5.	12	52 55	12	427 42 42	
4 6 Dint o 2 me throthesos mo to 0 2 66	42	24 (0)	21	-01	-02	41 41	21 21	- 050.2	402
EGICLON IN THE STATE OF THE STA	0.8	07 (01	22	- 41	-01		41 41	-11 -21 -21	48 27
4-Chicosten Liberovette sollo di	4 4		3	40	107	4 4	31 31	417 47	47
<u>,</u>									
Accession have a min his 3 \$77000 Accession min his 3 \$40000 Accession a min his 3 \$2000 Accession have min his 9 \$3 \$24 \$2000 \$200 has not be \$2 \$72	03 07	v 2 v 2 v 2	0.8	- 1	-0	4	2 2	200 45	
	- 1	31 31	71	21	23	31 31	01	T T T	91 31
Sergo philips learn make dis 4000	41			-01	101	47 41	41 47	- 61	41
	01 04 01 01	474 401 48 401		403 401	+0.2 +0.1	41 41 41 41	41 41 41 41	+ 01 +02 +02 + 03 +04 +03	41 41
10 CP-CR to a size spor's he stock 2 5 47000 to CP-CR to a size spor's he stock 2 5 86000 to CP-CR to hear sport has as sport	41 41	4 41		40.6	-01	47 41	41 47	40 40 40	41 47
But best in he are 80 to 9.2 86000	41 42	21 21 21	31	101	10.1	21 21 21 21	23 23 23	1 10 102 1 10 102 1 103 1 103	31 31
Oben uta hiten a ener	03 02	1 22	-1	2	2	7 1	4 47	40 40 40 40 40 40 40 40 40 40 40 40 40 4	1 2
Draw york hase 80 0 220000		11 21		- 2	2	3 1	3 3	427	
Dotter Lette mo to g 45		* 2				a .		427 40 40	
Diches 1856 9 42 1856 185	4 4	41 41	97	403 403	+0.2 +0.1	41 41	95 93	47 2 41	94 (0)
					_				+ - + - +
Medicity on harder	dr dr	- 2	- 1.	1	2.	27 31	2, 2,	417 4	3. 3.
1 cello cone de 2 2000 Nochdo cone de 2 660	01 01	11 -01	Ti .	2	-0 -0	41	92	427 42 41	1 1
enta his soberes e es la 5 400 Berlandh ente e es la 2 2000 Berlandh ente e e e e e e e e e e e e e e e e e	41 40	44 42	3	40.6	2	47 41	95 07	28 3 02	111 107 2 107
hend make 0 690		v 2 v02		-0	-0			407 40 40	+

AECOM

	20 4 44	22012067 00 22012067 002	22052087 003 4	22052087-0 4 2205 4	67-003 22052067 D	E 220 2067-007	22052067-008 20102067-008 2	22012007 0 0 2	22092087-0 22092087-0-2	22052087-0-3	22052 67-0 4 3	22062987 0 S	220 2067-0 6 3	2201206F 0 7	2052087-0 8	22052067 0 9	22052067-020 7	22052220 00	22062223 O 2	23012 20-003 6	22012220 004 6	22 12220-001 S	23052223 004 S	2092220-007 5	22062220 008
																								-	
	Wa x	Soi Samo e Soi Samole Made G ound Made G ound e 23 05 2022 09 30 23 05 2022 09 30	So I Stamp e Made G. o. nd	Sot Sample Sot Made Glound Mad	Sound State out	Sort Sample Cavif was led rate a	Soit Song e Soit Sample Cay Few Ned na v a Made G ound	Soi Samor Made G ound	So I Sample So I Sample Clay (eva ked nau a) Cay (evo ked nau a)	Sol Sample Clay Levo X, dina v al	Sot Sam te Cay (wo led retu a	Soit Sample Cay (exp. edita y a)	So I Stampte Cay I evo hed natu at	Soit Samo e M. de G. ound	So I Sample Sit I must led also all C	Soi Same e Say I eup ked n tu 1 C	Sot Sanute Say I euo ked na u a l	So I Samp e M de G ound	Sot Sample Made Glound	So I Som te Clay (no hed natura ! * *	Sol Samo e	So I Sample C av I evo hed natural	Soi Sample Cay Feet Sed name A C	Sot Sample Say I evo ked natu a 1 7	Soi Sampe Cay I was ked n tu 1
DO NO TORONTO	71000 At A	23 05 2022 09 30 23 05 2022 09 30	23 06 2 22 29 32	23 05 2022 09 30 23 05	22 20 23 06 2022	30 23 05 2022 30	23 05 2022 0 23 05 2022 2 4	23 06 2022 2 45	23 05 2022 245 23 05 2 22 2 46	23 05 2022 3 30	23 05 2022 3 30	23 05 2022 3 30	23 05 2022 3 30	23 05 2022 5 30	23 06 2022 5 30	29:05:2922 5:30	23 05 2022 5 30	24 05 022 09 00 29 9	26 06 2022 08 00	24 05 2022 09 00	24 05 2022 09 00	4 05 2022 0 30	24 05 2022 0 30	24 05 2022 0 30	24 05 2022 0 30
																								=	
uC2 -C35 (Waha) IV moles 0				-	r	+ 52	n		+ 20				+28	80	+27	+ 2		2.60	99.3		25.6	24.8		-	+24
JC DC 2(A orași) moto 4	28000	46		44 M	72	-90.0	575		4543		11.72 11.72		411	11	10.00	45.26		3	- 100 - 100		459	7.28			- 43
C 2-C 8 (A orașio) me te 4	37000	784	+	rd 85	52		35.2		-5.03		=1.72		41	85.6	+0.08	-6.26		628	7.36	-		1.5		+	-6.30
	250303								-									_				_		=	=
	200000	- 1		- 1	ž.		- 1				- 1			-	- 4										=
																									$\overline{}$
Dich o cettere us s	69000	-1	+	-	4	_					-15		-	- 4	- 4	-			_	-				+	
				- 4	1								-						- 1					=	
23- ic to so soone us 4	250303 0			- 7	4		- 4							- 4				- 3	- 4			-3		\rightarrow	
																								=	=
	60	1		- 1	1		- 1							- 1											
	932 5900		+		4		- d		-		15			- 1					-	-		-		+	
																								=	=
3 Dich c coertainer up q	23003000	-4		-	-	-			-				-	- 4	-	-		-			-	-		=	
2 Dich o co coone up a d	23003000 0003000	- 1		- 1	1						- 1			- 1	- 2			- 5	- 5		- 3	5			
2.2 Dish o oo coone us s 2		_		- 2	-								- 3		3	- 4									
																								-	
B productions are at a	222302 830302		_					_		-		_								_	-	-			
8 anothir arethre	300	-4		-	4		- 4		-		-8				-	-		-	-		-			=	
																								=	
Chir cherone of a	30300										-		-					- 2	- 2		-3	-0			
ON con will	70000 70000	- 4		- 2	ž.								- 2	- 4	- 2	- 2		- 1	- 1		- 1	- 4			
Chis one tane	200	- 7	+						-				ed.	- 7				-		-	- 0	-		+	
Do one No on these	29000																								
Dib onome have up a	99000	-4					- 4		-		- 1				-	-		-	- 1					=	
Ethyberg ne us s 2	370000			+ 2	3						+ 7		- 0			- 0		- 5	- 5		- 3	-07		-	- 3
	8000000 3000000	-23 15		- 24	54 -6	-	-23				124			15	- 45						17	- 1			
Notification us d 5	3003000 800300 58003000			- 1	60	,	- 4				-90	_			- 00	-		,				5			
																								=	
Sty ene ut d	20000000 6500000			- 2							- 4			- 4	- 2			_						-	
to 1 But became up 4	20000000	-1			-				-									,	- 4		- 4	-3			
^ ^																								-	-
	8200 500	- 1	+		1			+ =			-	-								-					
Will Chief de Marie Mil 4	230200000																							\rightarrow	=
								· ·																=	
Soci C consistence . Social States		748 256	526	353	10 100	326	3 401	+0.0	34 g	OR.	0.80	,	25	- 24	27	2.7	2.25	246	339		34	186	47		2 52

AECOM stall Court most plus to Court and plus to

E hy benzene	ug l	5	300	20
m.p-Xyene o.Xyene	pg l	0	500 90	30
2.00			~	
>C6-C7 Alphatic >C7-C6 Alphatic	mo I	0	5	
	-	•		
>CS-C 0 A leha ic >CS-C 0 A oma ic	mp I	0 02	03 03	
C5-C6 Alphatic	mol		5	
>C6-C 0	mal			
306-0 0	mg			
Coppe as Cu end as b	mp I	0.00	00	0.00 2
	-			
Se en um as Se otal Ch omium as C	mo I	0.00	0.05	
Calcum as Ca	mol			
I on as a Ammoniacal N t ogen as N	mg I	00	0.2	0.3
Chomum V) as C	mol	0.003	0.05	0.0034
Equiva ent Weight o D v Ma e	l ke			
	-			
acion o non cushable mate. Voume o Wale o 2 each	- % - 1			
Weight o Sample leached kg	ko			
Methylohenos	mol	0.08		
herol	mo I	0.05	5.6	0 0077
es Cyanida	mol	0.02		
	mal	0.005	0.000	
2.4- ch o oberzene 2-D chio oberzene	mg I	0.005	0000	
4-D chlo obergrene	mol	0.005	03	
Metrylnephthalene 2.45- ch o cohenol	me I	0.002	0.00	
2 4-D chio ophenol	mo I	0.02	0.046	0.0042
2 4-D methy phenol	mal	0.02	0.36	0.0042
2 4-D nit ophenol	mgl			
2 6-D nit otoluene 2 Ch o onaphitwiene	mp I	0.005	0.000049	
2 Ch o cohenol	mel	0.02	0.09	0.05
2 Nt can ine	mal	0.005	0.9	
2 Nt ophenol	mg l	0.005	0.9	
	-			
4 5-D nit o-2-ms by phenol 4 B omophery/-oherwishe	mg I	0.05	000 S	
7 D 30132 M (17 S M (17 M)		0.002		
4 Chio cehenol	mpl	0.02		
4 Chio opheryl-pherylethe 4 Nit gani ine	mp I	0.005	0.0038	
Acenaph hene	mol	0 002	00 8	
Acensoh hy ene An hi acens	mo I	0 002	00.8	0.000
			009	0.000
Benzolalanth scene Benzolalov ene	mp I	0 002	0.0035	0.000000 7
Benzolbi luo anthene	mpl	0 002	0.000	0 0000 7
Benzoic Ac d			75	
Benzol Alcohol	mg l	0 005	75 2	
	-			
b s(2-Chlo cethyl e he b s(2-Chlo olsop opyl e he	mo l	0.005	0 0000 4	
Ca barole	me I	0.0		
Ch yeens	mpl	0 002	0.007	
D benzo u an	mol	0 005	0.0079	
D e hylphthalate D metrylphtha a e	mol	0.005	5	02
		0 002		0.02
D-n-octyph hala e D phenyl e he up an hene	mg I mg I mg I		0.2 0.00083 0.004	
		0 002		0.0000083
Hexach o oberusere	mp I	0.005	0.000	0.00005
	mg I	0.005	0 0004	
Hexach o oby ad ene Hexach o ocyclopen ad ene	mo			
Hexach o ocyclopen ad ene				
Hexach o obu ad ene Hexach o coyclopen ad ene Isopho one Naphthalene	me i	0 005 0 002	0.078	0 002
Hexach o ocyclopen ad ene laceho one Naphthalane	me i			0.002
Hexach o ocyclopen ad ene laceho one Naphthalane		0 005 0 002 0 005 0 05	0.078 6 0.0.2 0.009	0 002
Heach o ocyclopen ad ene isopho one Naphthalene N-Nit oaod shery amine	me i	0.005	00 2	
Hazach o poyclopen ad ene lacebo one Nachthalara Nachthalara Nati osod pheny amine entachlo ophenol	me i me i me i	0.005	00 2	
N-Nt cood pheny amine	me i	0.005	00 2 0009	
Hazach o coyclopen ad ene- lacebo one Naphthalane NNR osed shany amine antachlo onhenol y ane otal (5) hano a	mpi mpi mpi mpi mpi	0.005 0.05 0.002 0.35	00 2 0009	
Heasth o coyclosen ad one leopho one Nachhalana NNR cand pheny amine establic ocherol y ans cost (5) here s C5 C7 (Risbatic) C5 C7 (C5 (Risbatic)	mpi mpi mpi mpi mpi	0.005 0.05 0.002 0.35	00 2 0009	
Heasth o concluses ad essa- heaths are: Note that the same arms and the same arms arms arms arms arms arms arms arms	mei mei mei mei mei mei mei	0.005 0.05 0.002 0.35	0.02 0.009 0.009	
Heasth o coyclopen ad one leopholone Nishthataria NNS soud sharry arrive entacks coherci y and cotal (5) hero a SC 652 (Ajebatic) SC 252 (Ajebatic) one M.S.C.650 (Ajebatic) one C.S.C.650 (Ajebatic)	mei mei mei mei mei mei mei	0 005 0 05 0 002 0 35	00.2	
Heasth o concluses ad essa- heaths are: Note that the same arms and the same arms arms arms arms arms arms arms arms	mei mei mei mei mei mei mei	0.005 0.05 0.002 0.35	0.02 0.009 0.009	
Hearth opportunities Inspire one Note and aberra arms solution Note and aberra arms solution opherol y-ene solutio	mg I	0 005 005 005 0 002 0 35 0 0 0 0 0 0 0 0 0 0 0 0	00.2	
Hearth open and me. Incoho com. Note and shore arms solution observed. Note and shore arms solution observed. V and obt (3) belon ob (4) belon ob (5) belon ob (6) ob (6) ob ob ob (6) ob	mg I	0.005 0.05 0.002 0.35 0.0 0.0 0.0 0.0 0.0	00.2	
Meanth a contract of are North are North are North are North are North and North a	mg l	0.005 0.005 0.002 0.002 0.00 0.00 0.00 0	00.2	

•••	4 at 0.2 So I Sample	4 at 5 Sol Samp e	at 0.2 Soil Sample	at 2 0 Soil Samp e	2 at 0.25 Sol Samp e	2 at 3 0 So I Sample	3 at 0.75 Soil Sample	3 at 2 9 So I Samp e	7 at 0.2 So I Samp e	7 at 0.9 Soil Sample	7 at 2.2 Soil Sample	Sol Samp e	So I Sample	5 Soil Sample	Sol Sample	Sol Sample
	Made G ound	Made G ound	Made G ound	Cay (eso ked na u.s.)	Made G ound	Clay (ewo ked natu al)	C sy (ewo ked no u si)	Cay (ewo ked retu a)	Made G ound	Sit (exp ked natu a)	Cay (ewo ked na u.a.)	Made G cund	Made G ound	lay with next fearn ked rates	C sy (ewo ked ratu s)	Clay (exp ked ratu a)
	- G		- 6	- 6		- 6	- 0	- 3	- 6		- 6			- 6		- 3
	< 0	- 0	< 0		< 0		< 0	< 0	< 0	< 0		< 0	< 0		< 0	< 0
	e0 00	<0.00	-0 00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	-0.00	-0.00	e0 00	<0.00	<0.00	<0.00	e0 00
	d0 00	-0.00	-0.00	<0.00	<0.00	<0.00	<0.00	<0.00	-0 00	-0.00	-0.00	-0.00	<0.00	<0.00	<0.00	-c0 00
	40 00 -0 770	-0.00	-0 00 -0 000	<0.00	<0.00	<0.00	<0.00	<0.00	e0 00	<0.00	40 00 40 000	60.00	<0.00	<0.00	<0.00	40 00 40 000
	<0.00	c0 00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	e0 00	<0.00	<0.00	<0.00	<0.00
	<0.00	-0.00	-0 00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	-0-00	-0.00	<0.00	<0.00	<0.00	<0.00
	0.053	<0.00	-0.00	<0.00	0.00	0.002	<0.00	<0.00	0.002	0.002	0 002	0.004	0.002	<0.00	<0.00	<0.00
	40.00	<0.00	-0.00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	-0.00		<0.00	<0.00	<0.00	0 002
	0.003	0.00	0.004	0.00 0.002	0.00	0.002	<0.00	<0.00	0.002	<0.00	<0.00	0.006	0.004	0.003	0.007	0.003
	0.35	<0.00	-0.00	0.002	<0.00	0.00	<0.00	0.002	<0.00	0.002	-0.00	0 006 0 024	<0.00	0.003 0.002	0.007 0.00	0 003 0 002
					_											
	<0.0	0.5	<0.0	o's	-00	0.32	-00	005 57	<0.0	0.06	<0.0	585 0.0	00	03	23 0 02 0 2	4.4
	05	75	0.9	77		52	03	5.7	<0.0	0.05	02	<0.0	74	99	02	63
	0.04	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.0	<0.003	0.029	<0.003	<0.003	<0.003	<0.003
	0.4	0.4	0.4	0.4	0.4	0.4	04	04	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
	0	0				0		0							0	0
	0.742 0.455	05.4 0586	0.706 0.494	0.589 0.6	0.734 0.466	0.59	0.72 0.479	0 636 0 564	0.753 0.447	0 685 0 5 5	0 658 0 542	0.777 0.423	0.7.5 0.485	0.672 0.528	0.75	0 656 0 564
		_										_	_			
	<0.05	<0.05	40 05 20 08	e0.05	e0.05	-0.05 -0.75	-0.05 -0.05	<0.05	40.05	<0.05	<0.05	40.05	c0.05	c0.05	40.05 20.08	<0.05
	40 UD	cuso	-OU UD	60.05	cuus	60.00	60.05	60.05	- CU UD	CU US	KU UD	eu us	cuus	cu us	20.00	<0.00
				1	1	1				1	1					
	<0.02	<0.02	40 02	0.02	<0.02	0.03	<0.02	0.03	0.02	0.03	0.03	<0.02	<0.02	<0.02	<0.02	<0.02
										1						
	<0.020	<0.020	<0.020	<0.020	<0.020	<0.000	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.000	<0.020	<0.020
	<0.020	c0 020	<0.020	<0.020	<0.020	<0.000	<0.020	×0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.000	<0.020	<0.020
	40 020 40 005	c0 020	40 020 40 008	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020 <0.005	<0.020	<0.020 <0.005	e0 020	<0.020	<0.020	<0.020 <0.008	<0.020 <0.008
	<0.050	<0.050	<0.080	<0.080	<0.050	<0.050	<0.000	<0.000	<0.050	<0.080	<0.080	<0.080	<0.000	<0.080	<0.000	e0 080
	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080
	<0.080 <0.040	<0.080	<0.080 <0.040	<0.080	<0.080	<0.080 <0.040	<0.000	<0.080 <0.040	<0.080	<0.080 <0.040	<0.080 <0.040	<0.080	<0.080	<0.080	<0.080	<0.080 <0.040
	un man	×0.030	e0.000	20.000	×0.000	v0.000	20.020	×0.020	e0.030	v0.030	v0.020	e0.000	20.000	e0.000	×0.000	v0.020
	<0.008	<0.005	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.005	<0.008
	40 080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	-00 OBO	<0.080	<0.080	<0.080	<0.080
	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
	<0.050	<0.080	<0.080	<0.000	<0.080	<0.080	<0.080	<0.080	<0.050	<0.080	<0.080	-0 080	<0.080	<0.080	<0.080	<0.080
	40 200 40 020	<0.020 c0.020	<0.200 <0.020	<0.200	<0.200	<0.200 <0.000	<0.200 <0.000	<0.200	<0.200 c0.020	<0.200 <0.020	<0.200 <0.020	<0.200 <0.000	<0.200	<0.200 <0.000	<0.200	40 200 40 020
	40 080 -0 080	<0.080	<0.080	<0.080	<0.080	<0.000	<0.080	<0.080	<0.080	<0.080	<0.080	40.080	<0.080	<0.080	<0.080	<0.080
	<0.020	<0.020	<0.020	<0.020	<0.020	<0.000	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
	<0.005	<0.005	e0 008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.005	<0.008	e0 008	<0.008	<0.008	<0.008	<0.008	<0.005
	<0.008 <0.008	<0.005	40 008 40 008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.005	<0.005	<0.008	<0.008	<0.008	<0.008	<0.005	<0.008
	-0.000	-0.008	-0.008	-0.008	-0.008	-0.000	-0.008	-0.008	-0.008	-0.000	-0.000	-0.000	-0.008	-0.008	-0.008	-0.000
	<0.005	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	40.00E	<0.008	<0.008	<0.008	<0.008	<0.008
	a) uus	00000	0.000	20006	20000	60 000	20 008	20108	60 008	CU UUS	0.000	20 008	20 008	20 000	20 008	artus
	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400
	-0 020	<0.020	-0 020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	-0.020	e0 020	<0.020	<0.020	<0.020	-0.020
	All trans	AS 800	,c.mn	, n nnn	20.000	-0 mm	V0.000	V0.000	20.000	ya. ese	,0 mm	AS 1000	20 mm	-0 mn	20 mm	20 pm
	<0.020	c0 020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	c0 020	<0.020	40 020	d0 020	<0.020	<0.000	<0.020	<0.020
										1						
	<0.060 <0.005	c0 040 c0 008	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	c0 040 c0 005	<0.040 <0.005	40 040 40 008	40 040 40 008	<0.040	<0.040 <0.008	<0.040 <0.008	40 040 40 008
		_			 	-				1		_	_			
	e0 020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	e0 020	<0.020	40 020 -0 020	-0 020 -0 020	<0.020	<0.000	<0.020	<0.020 -0.020
	40 020	<0.020	<0.020	<0.020	<0.020	<0.000	<0.020	<0.020	<0.020	<0.020	40 020	<0.020	<0.020	<0.020	<0.020	40 020
	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	40 00s	<0.008	<0.008	-0 008	<0.008	<0.008	<0.008	<0.008
	<0.005 <0.005	c0 008 c0 008	<0.005 <0.005	<0.008	<0.008	<0.008 <0.008	<0.008	<0.008	<0.005 <0.005	<0.005 <0.005	40 008 40 008	40 008 40 008	<0.008	<0.008 <0.008	<0.008 <0.008	<0.005 <0.005
	×0.000	e0.020	e0.000	×0.000	×0.020	v0.000	×0.030	v0.020	e0.030	v0.030	v0.020	-0.000	×0.000	e0.000	×0.020	v0.020
	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	d0 020	<0.020	±0.020	d0 020	<0.020	<0.000	<0.020	<0.020
	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
	40,020	<0.020	-c0 020	<0.020	<0.020	40 020	<0.020	<0.020	40 020	40 020	40 020	40.020	<0.020	<0.020	<0.020	40,020
	c0 005	c0 006	-0 008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.005	-0.008	40 00E	<0.006	<0.008	<0.008	e0 005
	-0.000	-0.030	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.030	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
	eu 020 e0 200	cu 020 c0 200	<0.020 <0.200	<0.000 <0.000	<0.020	<0.000 <0.000	<0.000 <0.000	<0.020 <0.200	<0.200 <0.200	<0.020	<0.000 <0.000	<0.020 <0.200	<0.000 <0.000	<0.000 <0.200	<0.000 <0.200	<0.020 <0.200
	40 005 40	c0 008	40 008 2 40	<0.006	<0.008	<0.008	<0.008	<0.008	c0 008	<0.008 c. 40	40 008 C 40	40 008 2 40	<0.008	<0.008	<0.008	40 008 40
	1, 10	5. 40	1.00	- 1 -		1 7		5. 40							5. 40	1.10
	5	ıś	6	s	s	15	15	5	ıś	5	5	š	6	ıš	ś	6
	s s	IS IS	15 15	S S	S S	15 15	15 15	S S	IS IS	IS IS	S S	- s	- 15 15	IS IS	- S	1S 1S
	,	je .	-			10						-	р.	Ib.	-	p.
	š	8	8	ŝ	ì	B	B	ŝ	ŝ	ŝ	Š	-	- 1	B	-	5
	5	15		5	5	- 5		5	15	5	5	5	5	15		
	8	is is	5 5	S S	\$	5 5	5 5	5 5	S S	S S	5 5	s s	5	is is	5	5 5
	š	is .	Ē	š	i	15	ß	5	É	5	š	š	š	B	- 1	Ē
	5	IS	15			IS IS	B		IS.	15	8	5	15	B	8	IS.

AECOM

2- et achio os hans	ug l		0.57	
2- chip os hans	ugl		0.28	400
-D chip cethane	µg1		2.5	400
-D chlo getherie	ug!		40	9
2.3- ch o obenzene 2.3- ch o op opane	ug l		0 00075	0.4
24- ch o obenzene	ug I	5	0	0.4
2-D b omo-3-ch o op opane 2-D b omoethane	ug l		0.4	
2-D chlo obergene	ug I	5	000	
35- methybenzene	ugl	0.6	60	
3-D chio obergene	ug I	- "		
	ug l			
2 2-D chlo co conne 2 Cho o cluene	ug l		240	
2 CITO O COMPINE			270	
	\perp			
B omobenzene	ug I		62	
5 omoch o omethane	uo I		83	
5 onomethane	ug l	5	7.5	
Calbon et achio de	PQ I		3	2
Chlo obenzene	ug I		300	
Chlo o o m	ug l	5	00	25
Chlo ome hane	ug l		90	
cis 2 Dichio gethene	ug l		50	
D b omoch o omethane	ug l		00	
D b omomethane	pg I		8.3	
Dich o odi uo omethane	ug l		200	
	+			
iso- opyben ene	ug l		450	
m and p-Xylene	ug I		500	30
	\perp			
n Bu v benzene	ual		000	
o Xv ene	U01		90	
sec Buty benzene S v ene	ug l		2000 20	50
te -Bu vibenzene	U01		690	50
-				
cuene	ug l		700	74
tans 2 D choos hene	ug I		50	
t ans 3 D ch o co opene	uo I		20	
ichlo o luo omethane	ug l		5200	
V mrl Chlo de	ua l		0.5	77
eached O ganic Ca bon	mol	0.2		

	So I Sample	So I Samp e	Soil Samole	Soil Same e	Sol Sample	So I Sample	Soil Sample	Sol Samo e		Soil Sample	Soil Samo e	So I Samo e	So I Sample	Soil Sample	So I Samp e	So I Sample
	02	S S	0.2	2 2	0.25	2 20 2944588	0.75	29 29	02	09 09	22	0.5	20128458	2 201 20LDH	08 08	33 33
į.		<	<5	-	d	<	<	đ	<		<	<	<	-	<	<
E																
H			<5 <5	-											- 1	1
F		-	-c5	-	ď	-	,	đ	,		-	-		-	,	-
	<5		- 25	<5	- 25	- 5	- 5	- 25	<5	-6	<5	<5			d	d
	- 6		- 25	- 25	-25	- 3	- 6	- 2	- 3	3	d	- 5	, 0	- 3	- 6	- 3
	<5	- 6	- 25	<5	- 65	d	- 6	<25	<5	-6	<5	<5	ď	ď	- 6	- 6
	<5			<5	-6 -25	· ·	d		<5		<5	-65		· ·	d	d
E																
	-05	-05	- CO	<0.5	- G0	<0.5	, s		, S	-05	<0.6	<0.5	<0.5	<05	, s	-05
F																—
	<		<5	<	- 4	<			<		<				,	
į		-	40	-			-	9				-	-		-	
į		-	<5		-6			6				-				
E		,	-c5	-	ď	-	-	đ			-	,	,	-		
	- 6	- 6	- 25	- 6	<25	d	0	Ø	0			- 6	- 0		٥	d
	-	<			- 0	<		- 4				<	<			
		,	- 24		- 23							, ,		` .		
			- 6	- 0	- 6	e e	0	- 6	- 0			- 0		- 0	0	- 0
į.		1	- 45		- 4			- 4	•	-		1	- 1			- 1
			<5 <5	-					- 1				-			-
	_	-	<5	-	- 4	-	,			-	-	-	-		,	
F						,					,			,		
- 1			- 45		- 3			- 3								-
į																
Ė			-65					4		-			-	- 1		- 1
E																
Ŀ			45 45	-	4		- 1		-	- :				- 1	- 1	- 1
		-		-	ď	-	_	- 4	-		-	-	-	-	_	<u> </u>
F		-	<5	-	4	-	-					-			-	-
			<5	į.	- 6	2	4	8	ì		į.		- 1	i i	3	- 1
			<5					- 6			-			-		-
	- 8	86	42	47	55	24	8	28	42	44	47	26	85	3	65	28

Exceedance o C i e is 2 (column i
Exceedance o C i e is 2 (column i
Exceedance o C i e is and 2

Project number: 60664611

Annex E Ground Gas Assessment using RB17

Prepared For: Associated British Ports AECOM

AECOM Go nond Go houseser unique 1817

	Sample Numbe	22052067-001	22052067 002	22052067 003	22052067-004	22052067-005	22052067-006	22052067-009	22052067-010	22052067 017	22052220 001	22052220 002	1463234	1463235	1463236	1463237	1463238	1463239	1463240	1463241	1463242	1463243	1463245	1463915
	Sample Releience	4	4	4	4			2	2	7	TP6	TPG	TP01	TP01	TP01	TPOS	TP06	TPG4	TP07	TPO7	TP15	TP16	TP19	TP13
	Sample Numbe												D1	D2	03	D1	D1	D1	D1	D2	01	01	D1	D1
	Death	0.2	0.6	12	18	0.2	0.6	0.25		0.2	0.15	11	0.05-0.15	0 10-0 50	0.7	0 20-0 50	0 20 0 50	0.30-0.50	0 00 0 30	0 10 0 50	0.7	0 20-0 50	0.4	0 50-0 80
	Mat x	Soil Samp e	So I Samo e	Soil Samp e	Soil Sample	Soil Samp e	So I Sample	So I Sample	So I Sample	So I Sample	So I Samo e	Soil Samp e												
	St ata	Made G ound	Made Glound	Made G ound	Made Glound	Made Glound	Made G ound	Made Gound	Made G ound	Poss b e Made G ound	Made G ound	Made G ound	Made G ound											
	G ound invest gat on	2022 In tial GI	2022 n tal GI	2022 In tal GI	2022 In tial GI	2022 In tial GI	2022 Ini lai GI	2022 Ini Ial GI	2022 Init al GI	2022 nit al Gi	2022 ntalGI	2022 Init al GI	2020 GD Pick es GI	2020 GD Pick es GI	2020 GD P ckies GI	2020 GD P ckles GI	2020 GD P ckles GI	2020 GD P ckies GI	2020 GD Pick es GI	2020 GD Pick es GI	2020 GD Pick es GI	2020 GD Pick es GI	2020 GD P ckles GI	2020 GD P ckles 0
	Sampl ne Date	23 05 2022 09 30	23 05 2022 09 30	23 05 2022 09 30	23 05 2022 09 30	23 05 2022 11 30	23 05 2022 11 30	23 05 2022 12 45	23 05 2022 12 45	23 05 2022 15 30	24 05 2022 09 00	24 05 2022 09 00	25 02 2020	25 02 2020	25 02 2020	24 02 2020	24 02 2020	28 02 2020	25 02 2020	25 02 2020	26 02 2020	25 02 2020	27 02 2020	26 02 2020
					•										•			•						
Dete minand	Units																							
ici O sanic Matte (SOM)	S m m	7.45	3.95	524	3 53	>43.0	>43.0	>43.0	>43.0	>43.0	0.45	3 33	6.4	24	23	6.4	29	38	06	33	2.5	3.9	7	2.7
ac ion o O gan c Ca bon (OC)		0.0434	0.0229	0 0304	0.0204	>0.250	>0.250	>0.250	>0.250	>0.250	0.0026	00.93									1			
Total O gan c Ca bon TOCI	×	4.34	2.29	104	2.04						0.26	193	1224	1 395348837	1 337209302	1 720930233	1 686046512	2 209102126	0.348837209	1 918604651	1 452488272	2 26764186	4 069767442	1569767442
The acts of c 5 bustion	I. —	(5)	(5)	CSI	(52						C51	(52	(53	(5)	(5)	CSI	(5)	(5)	CSI	C53	22	C52	CSI	C52

aecom.com

Contact Us

ABPmer

Quayside Suite, Medina Chambers Town Quay, Southampton SO14 2AQ

T +44 (0) 23 8071 1840

F +44 (0) 23 8071 1841

E enquiries@abpmer.co.uk

